2021年度

博士学位論文

マイクロ波によるエントロピー生成と

不可逆過程に関する研究 ~~イクロ波の誘電分極によるハイドレート分解の可能性~

Research of the entropy generation and

irreversible process by microwave

~ Possibility of hydrate decomposition by microwaves dielectric polarization ~

中部大学大学院

工学研究科 創造エネルギー理工学専攻

中谷 伸

目次

概要	2
第1章 序論	
1.1 緒言	3
1.2 日本のエネルギー安全保障とこれまでの取り組み	6
1.3 マイクロ波によるメタンハイドレート分解のシナリオ	10
1.4 メタンハイドレートのマイクロ波加熱による分解実験	10
1.5 マイクロ波による非平衡熱力学理論	11
第2章 マイクロ波加熱によるメタンハイドレート分解実験	
2.1 包接水和物	13
2.1.1 単一結晶とその種類	13
2.1.2 包接水和物の構造	14
2.1.3 地球上におけるハイドレート	15
2.2 メタンハイドレートの生成装置	17
2.3 使用機器一覧	19
2.4 メタンハイドレート生成手順	20
2.5 4つの実験手順	23
2.6 実験結果	27
2.7 解析	42
第3章 多粒子系の不可逆過程	
3.1 熱力学と不可逆性	45
3.2 質点から単結晶多粒子系へのマイクロ波の適用	46
3.3 多結晶系の設定とマイクロ波による発熱過程	49
3.4 導電体について	51
第4章 マイクロ波加熱の非熱的効果と不可逆的変化	
4.1 マイクロ波加熱の非熱的効果	52
4.2 非補償的変換	52
4.3 マイクロ波加熱による潜熱過程	53
4.4 マイクロ波のエネルギーの分配比	56
4.5 実験から求める <i>Td_iSと、Td_eSへの分配</i>	56
第5章 要約と考察	58
謝辞	61
Appendix 損益分岐計算 ······	62
参考文献	67

概要

【マイクロ波によるエントロピー生成と不可逆過程に関する研究】

本研究は、始状態においてマイクロ波に感応があり、終状態ではマイクロ波に感応し ない試料を系として用いることを特徴とする。水分子とメタンから成るメタンハイドレ ート(MH)を液体窒素温度(-196 ℃)まで冷却したものを始状態とし、マイクロ波を 印加し、MH を分解して、氷(固相)およびメタン(気相)を終状態とする。

反応式は $CH_4 \cdot 5.76H_2O$ + マイクロ波 \rightarrow H_2O (氷) + CH_4 (ガス)

(固相、マイクロ波に感応性あり) (氷もメタンもマイクロ波感応性なし*1) マイクロ波の作用を始状態に限定した。終状態の氷はマイクロ波吸収が無く、分離さ れたメタンも分極性がないため感応しない。

熱力学上の基本量である重量と温度だけで、試料の変性過程を巨視的に把握できる。 マイクロ波過程と外熱過程を、明確に分離できる実験により、マイクロ波効果と呼ばれ る、温度差によらないエネルギー供給による物質変性の手段の存在を明らかにした。

この実験を説明するため、古典熱力学と統計力学上の速度分散を考慮して、マイクロ波周波数帯における散逸系熱力学の基礎となる理論を展開した。

本論文の実験結果は、エントロピーの増大で熱に落ちる前に、仕事のエネルギーのま ま、水分子間の結合を切断する作用があることを証明した。MH は常圧(0.1 MPa)下、 -76℃で熱分解する。水分子間の結合を切断された MH はメタンを開放し、これは巨視 的に重量低下として観測できる。また水分子は氷(マイクロ波への感応性はほぼ無し^{**} ¹)への再結合するため、マイクロ波のエネルギーによって氷は加熱されない。マイク ロ波は、試料中のハイドレートにのみ、選択的に供給される。終状態には、マイクロ波 が作用しないため、マイクロ波は、始状態への逆変換をもたらさない。

本論文では、このような非平衡状態を、熱力学のエントロピー生成と結びつける。す なわち、活性化エネルギーの峠を越えて始状態に戻る粒子の生成がなく、反応速度の増 進として観測されることを示している。また、散逸系熱力学における非補償的変化と不 可逆過程の相互間関係を微視的に考察する足がかりを提供すると期待される。

本研究は、火炎に代わる加工手段と論理を与え、カーボンニュートラルを目差す産業 構造、社会基盤の構築に大きく貢献する。たとえば、ハイドレートのマイクロ波による 固固相変化(ハイドレート→氷)は典型的な不可逆過程であり、高温の環境にあるマイ クロ波製鉄でも、同じ論理が通用する。鉄鉱石という酸化鉄はマイクロ波を吸収し、還 元された鉄は金属であるからマイクロ波を反射するので、エネルギー効率が高い。

※1:誘電体損失(マイクロ波の感応性) tanδは 0.0001 以下であり、マイクロ波に対する感応性はほとん どない(マイクロ波は素通り)。例として、液体窒素温度の氷(12g程度)を電子レンジ 650 W に 3 分間 (1 分ごとに観察)かけても溶解は認められず、氷のままである。

第1章 序論

1.1 緒言

本論文は、マイクロ波による非熱的効果を物質変化の理論と実験によって証明するものである。

マイクロ波による非熱的効果は 1980 年代から報告されている。高強度のマイクロ波 照射における無機物の固固、固気の反応として、アルミナ等の誘電性セラミックスがタ ンマン温度の 2/3 程度の低温で迅速に焼結、微粒子化、活性化エネルギー低下が報じら れ[1]、マグネタイトなどの磁性粉末では、ナノ粒子化ないしアモルファス化、さらに、 製鉄における低温還元や銑鉄時の純度の向上[2]~[5]が報告されている。有機合成に於け る低温反応や反応促進の向上など、分子化学、さらには生命化学にまで、加熱では得られ ない化学変化・相変化に対する報告が数多く寄せられている[6]~[8]。これらは「マイク ロ波の非熱的効果」という新しい現象であるとの主張と、実験に於ける測温方法の誤り にすぎない[9],[10]とする見解もある。

マイクロ波は、波長約1m~1mm (300 MHz~300 GHz)の電磁波であり、物質に当てることにより、高周波電磁界が物質内部の誘電体、磁性体を構成する双極子、空間電荷に作用する。このとき、イオン、スピンなどが振動・回転し、電磁界は物質の運動に作用する。この作用は仕事であり、熱力学において、内部エネルギーUは、熱Q+仕事Wで表される事から、マイクロ波の仕事Wが熱Qに変わる前に、化学変化や構造変化を励起する可能性がある。

筆者は、マイクロ波が単色性(周波数スペクトラムがデルタ関数)であり、かつ平面 波であるならば、この電磁界は、エントロピー最小の仕事を供給することになると考え た[11]~[13]。

散逸系熱力学において、エントロピー変化は二つの部分の和から成る。すなわち、系 全体のエントロピーの生成 $dS = d_eS + d_iS$ である。ここで、 d_eS は外界との物質及び エネルギー交換によるエントロピー変化、 d_iS は「非補償的変換」によるエントロピー 生成(エネルギー損失項)である[12]。

 d_eS はマイクロ波による試料の熱の生成によるエントロピー増大 ($C_p \Delta T = T d_eS$) として実測できる。

不可逆過程は熱力学力(thermodynamic force)*F*と熱力学流れ(thermodynamic flow) *dX*を使い記述することができ、熱力学流れは熱力学力によって引き起こされる。一般 に不可逆変化によるエントロピー生成*d_iS*は、時間*dt*の間に起こるエネルギーや物質な どの流れ*dX*と関連づけられる。この時、エントロピー変化は、

$$d_i S = F dX \tag{1}$$

で表される[12]。マイクロ波による非熱的効果はエントロピー最小の仕事によって *FdX* を発現した結果であると考えた。

また、世界ではメタンハイドレート(以下、MHと呼称)という物質の効率的な分解 と、それに伴うメタンの回収が望まれている[14]。工学利用の観点から、マイクロ波を 用いた MH の分解が利用できる可能性を追求する。熱的安定状態にある MH に対して、 潜熱分のエネルギーを仕事のエネルギーとして供給し、MH を分解する過程も、マイク ロ波の非熱的効果である。

MHは、水分子とメタン分子から成る包接水和物である。包摂水和物は、水分子が5 角形と6角形の結合構造で、分子式 CH4・5.75 H₂O の固体である。メタンは、マイク ロ波に対して分極性がなく、単分子として包接水和物の籠状構造の内部に保持されてお り、籠構造との間に化学結合を持たない。マイクロ波の電界によって、水分子の電子が、 クーロン力を受け、水分子が回転揺動をする。分子動力学シミュレーションは、揺動に より水分子間の結合が切れ、包摂水和物が崩壊することを示している[15]。

MHは -76 ℃が大気圧における分解温度である[16]。故に、液体窒素(-196 ℃ 温度 まで冷却した MHは、大気圧下において-76 ℃まで加熱しないかぎり分解しない。もし、 -196 ℃の MHにマイクロ波を印加し、-76 ℃より十分に低い温度で MH が分解されるな らば、熱による分解ではない。これは、マイクロ波の仕事 W が熱 Q に変わる前に直接 に内部エネルギーを変化させたと説明する以外にない。

もし、マイクロ波によって、水の氷点より十分に低い温度で、包摂水和物が分解されるならば、メタン分子は開放され、水分子はマイクロ波に対して感応性のある MH[15]から、感応性のない氷[17]へ、固相一固相転移すると推定した(Fig.1)。

Fig.1 極低温のメタンハイドレート分解のイメージ図

メタンの分圧に対するメタンハイドレートから氷への固相-固相転移の定量的な理 解には高度な理論計算が必要である[18],[19]。 氷の結晶は、水分子が三角形に結合した正4面体が基本であり、水分子間の結合が強く、マイクロ波によって揺動がほとんど発生しない。相転移後の氷がマイクロ波からエネルギーを受け取れないことは氷の誘電損失が、tanδ<10⁴であることからもわかる[20]。

以上より、系の始状態である MH はマイクロ波からエネルギーを受け取ることが出来 るが、終状態の氷はマイクロ波からエネルギーを受け取ることが出来ない。故に、熱力 学的に始状態の系のみに選択的にエネルギーを供給可能な実験条件を現実に作り出せ る。不可逆変化は、マイクロ波照射による昇温と、MH 分解に起因したメタン分子の解 放による重量低下によって観測できる。

実験は、高純度メタンハイドレート試料を実験室で生成することから始める。圧力 5 MPa、温度 0.6 ℃の条件で、純水 30 g 中にメタンを攪拌分散させる。この状態を 20 時 間程度継続する。温度 0.6 ℃では、水は液相であるべきだが、白濁した固相化を認めた。 メタンハイドレートの分子式は CH4・5.75H2O であり、理論上、純水 30 g に対しメタン ガスは 4.62 g で飽和値となる。生成実験においてはこのとき、30 g で開始した試料の重 量は、1 g~3 g 程度増加していた。

単純に、メタンガスが水中に泡状に閉じ込められた状態では、水は固相にはなりえない。熱力学的平衡状態図によれば、この純水とメタンのみから成る固相は、メタンハイ ドレートである。

この生成した MH 試料を、5 MPa の加圧状態を保ったまま液体窒素温度まで冷却し、 実験試料とした。

この試料を、炉内寸法 300×300×200 mm の金属壁を持つマルチモードのマイクロ波炉 に投入して実験を行った。マイクロ波を出力 500 W に設定し、10 秒間入射し、70 秒間 休止するパルスモードで照射した。この 70 秒の休止時間中に温度と重量を測定した。

以下に、実験結果を示す。

最初の10秒間のマイクロ波照射で、*ΔT* < 7 ℃ (数℃)程度の温度上昇と、メタンハイ ドレート試料の重量減少が起きた。その重量減は、誤差の範囲でハイドレート中のメタ ンの含有量の1/2の重量に等しい。この重量低下は分析の結果メタンであることを確認 した。状態図より、-196 ℃~-189 ℃の温度域では、メタンハイドレートは深い安定領域 にあり、外部から熱伝導によって、7 ℃の温度上昇をきたしても熱分解は起こりえない (Fig.2)。

マイクロ波は、融点より遙かに低い温度で、潜熱を供給し、相転移を起こすだけのツ ールとみなす。この、非熱的ツールで、温度変化を伴わない潜熱過程、つまり、散逸系 熱力学でいうところの非補償的変換*d_iS*(古典熱力的には、不可逆過程)を起こす事が 本研究の実験によって確かめられた。

マイクロ波の非熱的効果は、セラミックス焼結や、製鉄など、多様な科学反応や、メ タンハイドレートの分解などに用いることができ、加工に必要となるエネルギーを非熱 的にすることで最小限に抑え、脱炭素社会の根源に関わる様々な工学に応用が可能である。

本研究の意義は、マイクロ波というエントロピー極小の場を用いて、物性変化を熱に よらずに達成する手段に論理的な基盤を提供し、脱熱加工、脱炭素社会の構築に貢献す る有力な論拠を与えたところにある。

Fig.2 メタンハイドレートの熱力学的平衡状態図

1.2 日本のエネルギー自給率とこれまでの取り組み

エネルギー自給率とは、生活や経済活動に必要な一次エネルギーのうち、自国内で確保できる比率を示す。この比率は、エネルギー自給率(%)=国内産出 / 一次エネルギー供給×100 で算出される。1960 年度には主に石炭や水力など国内の天然資源により58.1% であったエネルギー自給率は、それ以降、石炭から石油や天然ガスへ燃料転換が進み、2019 年時点で10% 前後まで低下している[21]。一次エネルギー国内供給構成及び自給率の推移をFig.3 へ示す[21]。

また、日本の年間発電量は過去10年の間、約1兆 kWh で推移している[22]~[31]。そ して2011年の東日本大震災より、原子力発電の発電量の低下と火力発電の発電量の上 昇が一致しており[22]~[31]、それに伴い日本は貿易赤字に突入した[32]~[37]。これは海 外から調達する一次エネルギーの増加が要因の一端であり[32]~[37]、自国領内における 一次エネルギーの採掘がエネルギー安全保障上急務である。各発電所別の発電量と輸出 入について、Table.1 へ示す[22]~[37]。

近年、日本が使用する数十年分の天然ガスに匹敵するメタンが日本近海に眠っている ことが判明し[38],[39]、注目を集めている。このメタンは、MHという特殊な固体(包 接水和物)として埋蔵されており、このMHからメタンを回収することでエネルギー安 全保障の強化を図ることができる。しかし、現状では MH の有効な分解方法が確立されているとは言い難い。

現在までに試された MH からメタンガスを採掘する方法[40]には、①減圧法、②温水 循環法、③Huff & Puff (熱刺激法)、④温(熱)水圧入法(熱掃攻法)がある。

このうち減圧法は「ポンプで坑内の水を汲み出す等により坑底圧を下げ、穿孔を通じ MH 層の圧力を MH 分解領域まで低下させる」手法であり、分解に消費される熱量は、 MH 層自身の熱量と上下地層からの伝熱により賄われるため、エネルギー産出比が高い。 減圧法において分解に利用できる熱は、貯留層(砂層を挟む、もしくは泥層を含む)の 持つ内部熱量(Cp×ΔT)と外部流入熱量の二種類である。砂泥互層の泥層の割合が多い と分解率は増加し、貯留層温度11℃の場合は、泥層が70%になると内部熱量のみで 100%分解する。外部熱量の流入速度は分解初期では高いが、時間と共に流入速度が低 下する。貯留層が厚くなるほど相対的に外部流入熱量は少なくなり、層厚 100 m では、 8年間の生産期間において総分解熱量に占める外部流入熱量の効果は2割程度である。 この減圧法が、最も実現の可能性があると予想され、常滑沖に於いて実地試験が行われ た。2007 年冬の第1次試験では、減圧法によって MH が分解し、メタンガスが回収さ れた。しかし、MH 層は未固結堆積物のため、メタンガスや水とともに砂も出てきてし まい(出砂現象)、その砂がポンプを停止させてしまったため、試験は12.5時間で終了 した[41]。2017年5月2日、出砂現象に対する対策を行った試験を開始した。5月4日 頃からガス量増加、5月6日に少量の出砂、ガス生産レートは3千 m³/日程度。坑底圧 力 5.6 MPa 程度で維持した。5 月 11 日以降は出砂が顕著になる。5 月 15 日、砂の対処 が困難となり、井戸の減圧を停止した。海上プラットフォームである観測船「地球」を 切り離して離脱した。隣の井戸に移動して、5月26日から作業再開、1万 m³/日を達成 したが、気水分離が不十分という問題が発生、6月下旬で全ての作業を終了し撤収した。

この大規模な試掘結果、最も可能性が高いと考えられた減圧法でも、様々な予期しない問題が発生した。実用化の課題は多い。

減圧法においては、分解に必要なエネルギーを新たに供給することなく、MH という 準安定な構造体の化学ポテンシャルを解放して、熱エネルギーを得る。新たな外部熱源 を必要としないため、採掘に必要なエネルギーが減圧だけであり、経済的に成立する可 能性がある。これが減圧法の最も重要な長所である。短所は減圧をすることによって、 出砂現象が起きる事である。

 $\mathbf{7}$

(注1)IEAは原子力を国産エネルギーとしている。 (注2)エネルギー自給率(%)=国内産出/一次エネルギー供給×100。 出典:1989年度以前はIEA「World Energy Balances 2020 Edition」、1990年度以降は経済産業省「総合エネルギー統計」を基に

2019 12.1 作成

Fig.3 一次エネルギー国内供給構成及び自給率の推移 [21]

年度【年】	地熱【億kWh】	水力【億kWh】	風力【億kWh】	太陽光【億kWh】	原子力【億kWh】	火力【億kWh】	年間発電量【億kWh】	輸出入 (貿易)	【兆円】
2009	27	745	0.0833	0.0037	2797.5	5684	9254	2.7	
2010	25	742	0.9271	0.0453	2882	5533	9183	9.9	
2011(東日本大震災)	25	744	1.8	0.4078	1018	6785	8574	4	
2012	25	674	1.7	0.8598	159	7359	8220	×,	
2013	24	686	1.6	0.8557	93	7431	8236	-13	
2014	24	702.5	0.3435	0.8894	•	7178	7906	-13	
2015	24	749	0.6717	0.9852	94	6756	7625	-2	
2016	22	842.5	94	469	173	8114	9715	3	
2017	22	902	105.6	556	313	7928	9827	2	
2018	22	872	114	652	621	7400	9681	-1	

5
5
22]-
Ĺ
\prec
Ъ
省
11
-0
町町
刪
洸
6
Ξ
Ē
ЩШ
笼
КП
11
Ļ
<u>e</u>
<u>i</u> di
Ë

1.3 マイクロ波によるメタンハイドレート分解のシナリオ

マイクロ波による物質の処理は、電子レンジとして実用化されている。大電力(概ね 1 kW/kg 程度)高強度のマイクロ波を固体・液体に輻射すると、物質中の電子がマイク ロ波の電磁界によって揺動を受ける。この揺動は、周波数1 GHz ~ 24 GHz 程度の単振 動であり、この単振動が、おもに分子間の摩擦によって減衰し、最終的に熱に変わる。物 質はこの様にして外部から直接に熱伝達、熱伝導による熱供給を受けずに自己発熱する。 これが電子レンジでの発熱現象の原理である。

また、マイクロ波加熱においては、この様な自己発熱だけでは、説明出来ないような物 質の不可逆的な変化が生じる。これは、1980年代から、実験的・経験的に知られている。 しかし、この非熱的な作用がどのようなエネルギー供給によってなされているのか理論 的には未解明である。

ハイドレート構造のような自由エネルギー(化学ポテンシャル)の大きい不安定な構 造体では、このマイクロ波の非熱的な作用が顕著に表れるのではないかと推定した。こ の仮説が実用化できれば、マイクロ波による分子揺動を梃子として、減圧法に匹敵する 高効率で、大型の減圧ポンプを用いることなく、メタンガスを採掘できる可能性がある。

この「マイクロ波固有の効果を利用して、ハイドレートから天然ガスを回収する可能 性」に関する基礎研究を開始した。

1.4 メタンハイドレートのマイクロ波加熱による分解実験

第2章において詳しく述べている。実験には、MHの試験体が必要である。MHを研 究室レベルで迅速に生成する装置を、慶應義塾大学理工学部機械工学科大村 亮教授の 研究室での体験に基づいて製作した。これは、水面下500m付近の海底に相当する5MPa まで加圧できる内容積50cm³の圧力容器に30mLの純水を封入し、圧力容器の総重量 を計測する。この圧力容器を真空脱気した後、恒温槽に浸け、5MPaのメタンガスを注 入し続けながら、電磁スターラーで攪拌し、MH結晶を造り出す。

20時間程度経過した後、恒温槽から圧力容器を加圧したまま引き上げ、外部の濡れ を拭き取り、重量を計測し、メタンガス加圧前の総重量との差をメタンの吸蔵重量とす る。30 mLの純水は、理論上は4.62gを吸蔵可能である。この実験では、メタンの吸蔵 量は1g~4gの間にバラついている。この方法で製作した MH を圧力容器ごと加圧した まま液体窒素槽に浸けて-196 ℃まで冷却する。MH の状態図から、大気圧に於ける融点 は-76 ℃である。したがって-196 ℃においては、大気圧まで減圧しても MH は安定な状 態を保つと考えられる。

-196 ℃の MH を大気圧に開放し、断熱容器(グラスファイバー製)に入れ、マルチモ ードのマイクロ波炉の中に設置し、マイクロ波を印加する。10 秒間の照射ごとに MH の上部表面温度と圧力容器の重量を計測、記録する。 比較のために、30gの純水を圧力容器に詰め、-196℃まで冷却固化させた試験体を用 意した。

実験の結果、MH 試料は、マイクロ波の最初の10秒間の照射によって、メタン吸蔵 量の80%以上、次の10秒に誤差の範囲で残余のメタンに相当する重量減が認められた。 以後の10秒間ごとのマイクロ波照射で起きる重量変化はおよそゼロであった。

さらに、メタンを吸蔵していない比較用の氷試料では、最初と2回目の10秒の照射 において、誤差の範囲で重量変化は認められない。3回以後の照射では、メタン封入も 純水も、誤差の範囲で同じバラつきを示した。

また、液体窒素温度まで冷却した、MH が入った圧力容器を断熱容器に入れ、大気中 で自然昇温させる実験も行った。このサンプルでは、-196℃~-80℃の温度域では、結 露の氷結による重量増加を認めた。-80℃以上では、氷結結露による重量増加とおそら くハイドレートの熱分解由来のガス開放による重量低下が重なり、重量変化へ複雑な相 関を示す。さらに昇温してゆくと重量は低下し、室温の前後で氷が割れてガスが噴出す る。これらの挙動は、MH の在来の加熱実験で見られる氷によるメタンガスの封止現象 と考えられる。

これらの実験結果から、マイクロ波照射では、平衡相線図において安定領域にある -196 ℃で、MH は分解し、メタンは開放される。

この結果は、マイクロ波による MH の分解が熱平衡理論だけでは説明できない事を示している。

1.5 マイクロ波による非平衡熱力学理論

第3章、第4章において詳しく述べている。「マイクロ波の固有の効果」は、迅速加 熱、高い反応選択性による高純度物質の生成など、現象論として、日本化学会、日本電 磁波応用研究会等、関連学会では広く認められている。実用化を目差すプロジェクトが 活発に行われ、企業において、その生産工程に取り入れられ、省エネルギー、省資源の 有効な手段として認識されてるようになっている。

この様な実用化への応用開発は広く行われているが、一方でマイクロ波という手段が 従来の熱源と異なる作用を示すのか、その物理学的、熱力学的な理論研研究は、十分と は言い難いと考える。筆者らは、この問題を徹底的に物理学の基礎に遡って究明を試み てきた。

2020年から、永田和宏(東工大名誉教授)、佐藤元泰(中部大学特任教授)を中核とした「マイクロ波熱力学理論研究チームを作り、毎週濃密・活発なゼミナールを続けて来た。日本化学会第101春季大会に、特別企画シ[S06-3am] 故きを温ね新しきを知るマイクロ波化学(座長,シンポジウム関係者:山田陽一、椿俊太郎、和田雄二、間瀬暢之)において、様々な角度から、このマイクロ波の特質について多面的な講演が行われた。この会合において永田は非平衡熱力学に関わる「非補償熱(非補償的変換)」が熱

カ学とマイクロ波の特異性を繋ぐ鍵である事、佐藤は統計力学の観点から、非平衡な高 温部の生成を論じた。筆者は、この高度な議論から、もう少し原理的な物理描像を想像 した。以下にその骨子を述べる。

従来から、マイクロ波という周波数スペクトラムが狭い電磁波は、物質の格子構造、 分子構造、特にその電子に直接に作用し、斉次運動を励起する。これは基本的な事項と して、学界に広く認められ、周知の事実である。即ち、物質の微構造に対して、伝播す るマイクロ波が与える電場・磁場の波長は、1000倍以上長いため、実質的に平面波とみ なすことができる。しかし、この外界からの揺動場を受ける物質は、多数の原子分子か ら構成されており、その微構造の単位(Unit)ごとに、マイクロ波の電界とは異なる極性 (Polarities)を示す。したがって、各微構造の応答は、物質の微構造が持つ異方性の乱雑 性をそのまま反映する。つまり、物質中の微構造に不均一な応答が引き起こされる。そ れ故に、不均一な物質中に励起した振動から輻射される電磁波(黒体放射)は、元の電 磁場にはならない。これは、マイクロ波が物質にエネルギーを不可逆的に供給すること に他ならない。

この不可逆過程の機構は、マイクロ波という波長域と物質の原子分子構造という概念 が確立している現代の物理学では、誰でも思いつくはずであるが、あまりに単純なため、 誰も気が付かなかったのであろうと推測している。

この研究結果は、産業革命以来、現代にいたる工業社会を支えてきた熱というエネル ギーの供給手段を根本から変革する。

熱に因らずに、構造変化、化学変化、相転移を図ることで、加工に必要なエネルギー を最小限とし、炭化水素系燃料の燃焼を減じ、リサイクル自浄能力を保全しつつ、豊か な文明、自然環境の保全を図って行くものと考える。

第2章 マイクロ波加熱によるメタンハイドレート分解実験

2.1 包接水和物

包接水和物(Clathrate Hydrate)、一般的に「ハイドレート」と呼称される物質は、水 分子の水素結合によって造られた格子の中に、炭化水素類など、別の分子を見かけ上、 保持した結晶構造を持つ。保持される分子は「ゲスト分子」と呼ばれる。また、地下に 埋蔵されている現物は、ゲスト分子の主成分が天然ガスと同様のメタンであるため[16]、 日本国内で「メタンハイドレート(以下、MHと記述)」、海外で「ガスハイドレート」 と呼称される[42]。

常温、常圧時において、水分子(液相)とゲスト分子(気相)が疎水であれば、液相、 気相は個々で安定なため混合することはない。

ただし、高圧低温などの一定の条件が重なったとき、固相状態が気液相に分離してい るときより安定である場合、水分子とゲスト分子は水和物(固相)を形成する。

その場合、ゲスト分子は単体で水と結合することなく、電気的なつながりのない状態 で、包囲される。

2.1.1 単一結晶とその種類

水分子の水素結合が織りなす格子によって形成される単一結晶(Unit cell)は5種確 が確認されている。例として、ゲスト分子がメタン(methane: CH₄)であれば、単一結 晶は Fig.4 内の(a) 5^{12} 」と(b) $5^{12} 6^{2}$ 」の二種類である。

(a) 「5¹²」であれば、五角形が 12 枚集まった十二面体であり、(b) 「5¹² 6²」であれ ば五角形が 12 枚、六角形が 2 枚集まった十六面体のことを示す[16]。

(a)「5¹²」、(b)「5¹² 6²」、(c)「5¹² 6⁴」、(d)「4³ 5⁶ 6³」、(e)「5¹² 6⁸」
Fig.4 ハイドレートの単一結晶 [16]

2.1.2 包接水和物の構造

単一結晶の集合体であるハイドレートには、Table.2 と Fig.5 に示す、 I型、 II型、 H型の三種類の構造がある。基本的に、 I型、 II型は、ゲスト分子が一種類の場合に生成され、H型は、ゲスト分子が大小二種類の場合に生成される。ただし、ゲスト分子が 二種類以上の混合であっても分子径が小さいもののみであれば、それぞれのハイドレー トを形成する最小形において小さい単一結晶の多い II型が選択される。また、単一結晶 がゲスト分子の分子径に依存していることから、同様に構造決定もゲスト分子の原子径 に依存しているといえる[16]。

	Ι	型	Π	[型		H型	
	小	大	小	大	小	中	大
単一結晶	5 ¹²	5 ¹² 6 ²	5 ¹²	5 ¹² 6 ⁴	5 ¹²	4 ³ 5 ⁶ 6 ³	5 ¹² 6 ⁸
生成最小数	2	6	16	8	3	2	1
水分子数	20	24	20	20 28		20	36
ゲスト分子の直径「d」【Å】	4.2 <	d < 6	<6 d<4.2 or 6 <d<7< td=""><td></td><td>7<d<9< td=""><td></td></d<9<></td></d<7<>			7 <d<9< td=""><td></td></d<9<>	
ゲスト分子例	メク エク 二酸 硫 化	なン なン と炭素 水素	水 窒 プロ イソ	(素 素 パン ブタン		【大分子】 イソペンタン ネオヘキサン 【小分子】 メタン 硫化水素 窒素	

Table.2 ハイドレートの構造特性

Fig.5 ハイドレートの結晶 [42]

2.1.3 地球上におけるハイドレート

自然界の包接水和物は主にメタンをゲスト分子とし、低温、高圧を得られる、海底、 海底下、永久凍土層下にてその存在が確認されている[42]。

例えば、日本近海の海底温度は2℃~4℃であり[43]、Fig.6 に示すように、その温度 域では3.2 MPa~3.9 MPa 以上の圧力が必要である。そのため、おおよそ400 m 以深に 存在することが想定される。また、海底下では0.03℃m 前後の地温勾配により高深度 ではその構造を維持できない。そのため海洋において水深、海底温度、地温勾配による ハイドレート安定領域が存在する[44],[45]。

Fig.6 MHの温度と圧力の相関

Fig.7 に、日本周辺の MH の分布を示す[46]。特に太平洋側のハイドレート層は砂層型 ハイドレートと呼ばれ、上下をスクメタイトなどの粘土を多く含む層にはさまれた砂層 内にあり、その割合は砂 62 %、シルト 30 %、粘土 8 %、程度である[47],[48]。

Fig.7 日本周辺の MH 分布 [46]

メタンハイドレートの調査は、石油や天然ガスと同様に、音波を使った物理探査(反射法地震探査)によって実施される。この調査データから BSR(海底擬似反射面: BottomSimulating Reflector)と呼ばれる特徴的な反射面を確認することによって、地層中のメタンハイドレートの存在を推定している[46]。

2.2 メタンハイドレートの生成装置

MH にマイクロ波を照射し、MH の分解を実験的に調べるには、MH 試料が必要である。この MH 試料に関する必要条件を検討し、その条件を満たす圧力容器が必要となる。試料内部へ均一にマイクロ波のエネルギーを供給するためにはハイドレートの減衰距離 *L* > ハイドレートの試料半径 *r* である必要がある。

各物質のマイクロ波への感応性を Table.3 へ示す。

Table.3 各物質のマイクロ波への感応性 [20]

Matarial	Dielectric constant	Dielectric power factor	Loss factor	Penetration Depth
Material	$[\mathcal{E}']$	$\tan \delta$	$\varepsilon' \tan \delta$	<i>d</i> [cm]
Air	1.0	0	0	_
Water (5°C)	80.2	0.275	22.0	0.80
Ice (-12°C)	3.2	0.0009	0.00028	12500
Glass	6.5	$0.009 \sim 0.01$	0.06	82.8
Wood (soft)	5.0	0.065	0.32	13.6
Wood (hard)	3.0	0.03	0.09	37.5
Phenolic resin	$4.5 \sim 6.0$	$0.04 \sim 0.08$	$0.2 \sim 0.5$	$20.7 \sim 9.56$
Urea resin	$6.0 \sim 7.7$	0.03	$0.16 \sim 0.23$	$29.8 \sim 23.5$
Vinyl chloride	$3.0 \sim 5.0$	$0.025 \sim 0.05$	$0.08 \sim 0.25$	$42.2 \sim 17.4$
Cellulose acetate	$3.0 \sim 6.0$	$0.001 \sim 0.07$	$0.03 \sim 0.42$	$112 \sim 11.4$
Rubber	$2.3 \sim 2.6$	0.0115	$0.027 \sim 0.03$	$109 \sim 105$
Soft rubber	2.9	$0.006 \sim 0.04$	$0.017 \sim 0.12$	$195 \sim 27.7$
Nylon	$3.0 \sim 4.0$	$0.04 \sim 0.07$	$0.12 \sim 0.28$	$28.1 \sim 13.9$
Polyethylene	2.3	0.0005	0.0012	2460
Polystyrol	$2.6 \sim 3.0$	$0.0002 \sim 0.0004$	$0.0005 \sim 0.0012$	$6290 \sim 2810$
Ebonite	$2.0 \sim 3.5$	$0.0025 \sim 0.02$	$0.005 \sim 0.09$	$551 \sim 40.5$
Teflon	2.1	0.0015	0.0032	883
Pottery	6.4	0.028	0.18	27.4
Porcelain	6.25	0.00055	0.0034	1430
Paper	2.7	0.056	0.15	21.4
Pyrex	4.0	0.0012	0.0048	812
Polypropylene	2.0	0.0002	0.0004	6890

Dielectric properties of several materials (2,450MHz)

Table.3 より、水分子のマイクロ波応答は液体の水と固体の氷では、大幅に異なっている。水は誘電率が約80あり、その減衰距離は1cmであり、氷の誘電率は3.2、減衰距離は125mである。MHの誘電率に関する文献は見つからない。液体の水が混入しても、試料内部までマイクロ波が侵入することができる大きさとして、直径40mm、高さ40mmの円筒型を選定した。

圧力容器はマイクロ波の侵入経路と側面観察を兼ねて、外径 60 mm、肉厚 10 mm の アクリル円筒(Fig.8-a)を 40 mm で切断し(容量 50 cm³)、厚さ 21 mm のステンレス円 柱の内側を 60 mm、深さ 11 mm で削り、上下で挟みボルトで固定する形状を 持つ(Fig.8-b, c)。

Fig.8-cの①~⑤はそれぞれ、

- ① MH 生成装置上部(ステンレス)
- ② MH 生成装置下部(ステンレス)
- ③ アクリル円筒 (アクリル)
- ④ 0リング (シリコン)
- ⑤ 六角ボルト

である。

Fig.8 ハイドレート生成装置

2.3 使用機器

使用機器の一覧を Table.4 へ示す。また、Table.4 内のマイクロ波照射装置を Fig.9 に 示す。

名称	型番	備考
防塵防水電子天秤	WPB6K02	最小表示0.2g、再現性±0.2g、直線性±0.2g
電源	PMC18-5	
圧力計	GC31-174	測定可能範囲:0~10 MPa
マグネチックスターラー	1-4609-25	1500 rpm
スターラーコントローラー	1-4609-21	
卓上型低温恒温水槽	BBL301	測定誤差±0.2℃
真空ポンプ	TA150SW	
高圧調整器	YR-5061H	
温度計(DIGITAL MULTIMETER)	IWATSU VOAC7602	熱電対はKタイプ、線径0.2 mm、先端0.3 mm、シース無し
四重極質量分析計	PrismaPro/ PT M28 642 / QME 250 M2	
真空計	FullRange Gauge / PT T03 350 010 / DN 40 CF-F	
ターボ分子ポンプ	HiPace 80 / TC 110/DN 63 CF-F	
油回転真空ポンプ	GLD-202BB	
マイクロ波照射装置	電子レンジからマグネトロン、1 結、3スタブ、アイソレータ	・ 電源制御部は全て除去、WR2導波管を接続、マイクロ波窓、方 を介し、ミクロ電子の1500Wのマイクロ波発信機を接続。

Table.4 使用機器一覧

Fig.9 マイクロ波照射装置

2.4 メタンハイドレート試料生成手順

以下にメタンハイドレート試料の生成手順を示す。

Fig.8の圧力容器に純水 30 mL(g)と攪拌用磁石を入れ密閉する(Fig.10)。

真空ポンプで圧力容器内を排気し、恒温槽(設定温度 0.6 ℃) に浸け、スターラーで 内部を撹拌する。

純度 99.9%、充填圧力 9.81 MPa のメタンボンベと接続し、圧力容器を 1 MPa 昇圧毎 に 3 分待機し、5 MPa まで昇圧した状態で 20 時間程度静置する。

0 ℃以上(氷にならない温度域)の圧力容器内部が固体であることを目視で確認し(Fig.11)、5 MPa で加圧しながら圧力容器ごと液体窒素で冷却(Fig.12)する。

冷却済みの MH を圧力容器ごと断熱材(グラスファイバー)で包み、試料は完成である。

実際の作業中には昇温防止の観点から写真撮影を行う時間的な余裕がないため、実験時と同様に、上部バルブを外した圧力容器を断熱材で包んだものを Fig.13 へ示す。

比較対象の氷試料は、圧力容器に純水 30 mL(g)と攪拌用磁石を入れ液体窒素で冷却し、圧力容器ごと断熱材(グラスファイバー)で包み、氷試料とした。

Fig.10 密封した圧力容器と配管図

Fig.11 0°C以上の MH (5 MPa)

Fig.12 液体窒素での加圧容器の冷却状況

Fig.13 断熱材で包まれた圧力容器

MHの分子式は CH₄・5.75H₂O であり、水1 kg とメタン 216 L から成る[49]。メタン の分子量が 16 g/mol であることから、水1 kg にメタン 154 g、今回の実験に使用した純 水 30 mL であれば、最大で 4.62 g 解けると水和物内占有率 100 % となる。

圧力容器に純水 30 mL(g)と攪拌用磁石を入れ密閉し重量を計測した。これを「仕 込み重量」と呼ぶ。圧力容器を 5 MPa まで加圧し、0.6 ℃に設定した恒温槽内に設置し、 20 時間程度経過した後に取り出し、水気をふき取り重量を計測した。これを「取り出 し重量」と呼ぶ。

(取り出し重量) - (仕込み重量)からメタン重量を算出した。

さらに、(メタン重量 / 4.62) × 100 = 占有率より、試料内の水和物のメタン占有 率を算出した。ハイドレートはその結晶構造においてゲスト分子を保持しなくとも、隣 り合うハイドレート構造がゲスト分子を保持していればその結晶構造につながる形で 全体としてハイドレート構造を維持できる。ただし、今回の実験では重量低下によって のみハイドレートの分解を観測しているため、このメタン占有率が本実験における MH 生成割合となる。得られた試料を Table.5 へ示す。

試料No.	仕込み重量【g】	取り出し重量【g】	MH内のメタン重量【g】	MHのメタン占有率【%】	試料重量【g】
1	4166.6	4168.0	1.4	30.3	31.4
2	4166.6	4168.8	2.2	47.6	32.2
静置実験用	4167.6	4169.6	2.0	43.2	32.0
ガス分析用	4165.6	4168.8	3.2	69.2	33.2

Table.5 得られた MH 試料

2.5 4つの実験手順

① MH 試料へのマイクロ波照射実験

液体窒素温度のMHを大気圧に開放し、圧力容器ごと断熱容器(グラスファイバー製) に入れ、マルチモードのマイクロ波照射装置の中に設置し、マイクロ波を印加する。500 W、10秒間の照射ごとにマイクロ波の入力(Forward)と反射(Reverse)、MHの上部 表面温度と圧力容器の重量を計測(Fig.14)、記録する。

マイクロ波照射に 10 秒、温度と重量の計測に 70 秒、1 サイクル 80 秒のバッチテスト (Fig.15) を 20 サイクル行い、1 試料当たり 1600 秒の実験となる。温度の校正は液体窒素温度とした。

Fig.14 温度と重量の計測

Fig.15 バッチテストの時間経過図

② 氷試料へのマイクロ波照射実験

比較のために、30gの純水を圧力容器に詰め、液体窒素温度まで冷却固化させた氷試料も同様にマイクロ波を照射し、マイクロ波の入力と反射、上部表面温度と圧力容器の 重量を計測、記録する。

③ MH 試料の静置実験

MH 試料を断熱容器に入れ、秤の上に静置し1分ごとに上部表面温度と圧力容器の重量を計測、記録する。

 ④ マイクロ波照射後にガス回収をしながら行った MH 試料へのマイクロ波照射実験 液体窒素温度の MH を大気圧に開放し、圧力容器ごと断熱容器(グラスファイバー製) に入れたのち、ゴムチューブ付きのジップロックに入れ、密閉する(Fig.16)。ゴムチュ ーブは水で満たされたペットボトルに接続し、水上置換法でガスを回収する(Fig.17)。 マルチモードのマイクロ波照射装置の中に設置し、マイクロ波を印加する。500 W、 10 秒間の照射ごとにマイクロ波の入力(Forward)と反射(Reverse)を記録する。マイ クロ波照射後に水上置換でガス回収を行った後で、MHの上部表面温度と圧力容器の重 量を計測、記録する工程を3サイクル行い、残り17サイクルは①と同じ方法でマイク ロ波照射実験を行った。温度の校正は液体窒素温度とした。

水上置換で改修したガスはガスバッグに移し、四重極質量分析計でガスの成分を分析した。

Fig.16 ジップロックで作ったガス回収バックに収められた 断熱材にくるまれた圧力容器

Fig.17 試料から水上置換法でガスを回収する図

今回の実験に当たり、MHのPT線図を基にした実験条件図をFig.18へ示す。

Fig.18 実験条件図

Fig.18内の①~④について以下に示す。

① メタンハイドレート (MH) の生成条件は 5 MPa, 0.6 ℃ である。

② MH が大気圧(0.1 MPa)で熱分解する温度は約 -76 ℃ である。-76 ℃以下であれ ば大気圧下でハイドレートは安定であり、熱分解は起こらない。液体窒素温度のハイド レートを熱分解するためには顕熱で-76 ℃まで昇温した後に潜熱を供給されることで初 めて分解であると仮定できる。

③ 実験は大気圧 (0.1 MPa)、液体窒素温度 -196 ℃ より開始される。-76 ℃以下の MH が分解されれば、熱以外のエネルギーによる分解であると言える。

④ 実験は-196 ℃~-128 ℃の間で行った。これは 0.1 MPa の MH の 安定温度域であり、MH は熱分解しない。

2.6 実験結果

「実験①」MH 試料へのマイクロ波照射及び、「実験②」氷試料へのマイクロ波照射の結果を以下 Table.6~9 及び Fig.19~23 へ示す。

また実験①及び実験②の重量変化と温度変化の差を平均化したものをFig.24 へ示す。 実験結果の注意点として、プロットの位置は1回の観測終了時の位置を示しているが、 試料の変化は主にマイクロ波照射中の10秒の間に起こっており、80秒をかけて変化 したものでは無いことに留意すべきである。

「実験③」圧力容器に入った MH 試料の大気圧中での自然昇温の結果を Fig.25 へ示す。

また Fig.25 中の経過時間 10000 秒 ~ 14000 秒、温度域で -78 ℃~ -60 ℃の結果(MH の熱分解温度は -76 ℃ に着目し、Fig.26 へ示す。

「実験④」マイクロ波照射後にガス回収をしながら行った MH 試料へのマイクロ波 照射の結果を Table.10 及び Fig.27 へ、ガス分析の結果を Table.11 及び Fig.28 へ示す。

MH 試料No.	仕込み重量【g】	取り出し重量【g】	MH内のメタン 重量【g】	MHのメタン 占有率【%】	
1	4166.6	4168	1.4	30.3	
経過時間【s】	測定回数【n】	温度【℃】	重量【g】	Forward [kW]	Reverse [kW]
0	0	-186	3656	-	
80	1	-178	3655	0.46	0.07
160	2	-171	3655	0.49	0.11
240	3	-166	3655	0.48	0.07
320	4	-163	3655	0.49	0.09
400	5	-160	3655	0.46	0.09
480	6	-158	3655	0.48	0.08
560	7	-156	3655	0.47	0.09
640	8	-152	3655	0.56	0.22
720	9	-150	3655	0.57	0.25
800	10	-149	3655	0.52	0.13
880	11	-146	3655	0.54	0.18
960	12	-144	3655	0.46	0.09
1040	13	-142	3655	0.46	0.08
1120	14	-140	3655	0.47	0.09
1200	15	-138	3655	0.47	0.10
1280	16	-136	3655	0.57	0.22
1360	17	-135	3655	0.54	0.24
1440	18	-133	3655	0.55	0.18
1520	19	-131	3655	0.57	0.22
1600	20	-128	3655	0.59	0.27

Table.6 MH 試料1のマイクロ波照射実験結果

Fig.19 MH 試料1のマイクロ波照射による重量変化と温度変化

MH 試料No.	仕込み重量【g】	取り出し重量【g】	MH内のメタン 重量【g】	MHのメタン 占有率【%】	
2	4166.6	4168.8	2.2	47.6	
経過時間【s】	測定回数【n】	温度【℃】	重量【g】	Forward [kW]	Reverse [kW]
0	0	-196	3658	-	_
80	1	-189	3657	0.49	0.12
160	2	-183	3657	0.50	0.13
240	3	-180	3657	0.53	0.15
320	4	-176	3657	0.49	0.14
400	5	-173	3657	0.51	0.21
480	6	-170	3657	0.48	0.14
560	7	-168	3657	0.50	0.18
640	8	-165	3657	0.52	0.16
720	9	-164	3657	0.52	0.21
800	10	-162	3657	0.48	0.13
880	11	-160	3657	0.53	0.17
960	12	-158	3657	0.56	0.25
1040	13	-156	3657	0.52	0.20
1120	14	-154	3657	0.55	0.21
1200	15	-152	3657	0.55	0.29
1280	16	-150	3657	0.53	0.27
1360	17	-147	3657	0.52	0.34
1440	18	-146	3657	0.51	0.29
1520	19	-144	3657	0.51	0.31
1600	20	-143	3657	0.51	0.29

Table.7 MH 試料2のマイクロ波照射実験結果

Fig.20 MH 試料 2 のマイクロ波照射による重量変化と温度変化

Time 【s】

Ice 試料No.	純水量【g】				
1	30				
経過時間【s】	測定回数【n】	温度【℃】	重量【g】	Forward [kW]	Reverse [kW]
0	0	-196	3658	_	_
80	1	-194	3658	0.50	0.23
160	2	-191	3658	0.52	0.25
240	3	-188	3658	0.44	0.13
320	4	-186	3658	0.48	0.19
400	5	-183	3658	0.53	0.26
480	6	-180	3658	0.47	0.17
560	7	-178	3658	0.50	0.21
640	8	-175	3658	0.49	0.19
720	9	-174	3658	0.53	0.27
800	10	-172	3658	0.50	0.20
880	11	-170	3658	0.49	0.20
960	12	-168	3658	0.50	0.21
1040	13	-165	3658	0.47	0.17
1120	14	-164	3658	0.44	0.14
1200	15	-162	3658	0.51	0.21
1280	16	-160	3658	0.40	0.11
1360	17	-159	3658	0.51	0.22
1440	18	-157	3658	0.51	0.22
1520	19	-156	3658	0.50	0.20
1600	20	-154	3658	0.48	0.18

Table.8 Ice 試料1のマイクロ波照射実験結果

Fig.21 Ice 試料1のマイクロ波照射による重量変化と温度変化

Ice 試料No.	純水量【g】				
2	30				
経過時間【s】	測定回数【n】	温度【℃】	重量【g】	Forward [kW]	Reverse [kW]
0	0	-195	3658	_	_
80	1	-192	3658	0.47	0.17
160	2	-188	3658	0.45	0.15
240	3	-185	3658	0.47	0.20
320	4	-183	3658	0.45	0.15
400	5	-179	3658	0.47	0.18
480	6	-176	3658	0.50	0.24
560	7	-175	3658	0.45	0.15
640	8	-172	3658	0.49	0.22
720	9	-170	3658	0.46	0.17
800	10	-168	3658	0.47	0.19
880	11	-165	3658	0.50	0.23
960	12	-163	3658	0.47	0.17
1040	13	-162	3658	0.43	0.12
1120	14	-161	3658	0.48	0.23
1200	15	-159	3658	0.46	0.18
1280	16	-158	3658	0.44	0.13
1360	17	-156	3658	0.45	0.14
1440	18	-155	3658	0.46	0.17
1520	19	-153	3658	0.45	0.14
1600	20	-152	3658	0.47	0.17

Table.9 Ice 試料2のマイクロ波照射実験結果

Fig.22 Ice 試料 2 のマイクロ波照射による重量変化と温度変化

■MH sample 1 ▲MH sample 2 ×Ice sample 1 ● Ice sample 2

■MH sample 1 ▲MH sample 2 ×Ice sample 1 ●Ice sample 2

Fig.23 MHと Ice 試料のマイクロ波照射による重量変化と温度変化

Fig.24 MH と Ice 試料の重量差平均と温度差平均

Fig.25 圧力容器に入った MH 試料の大気圧中での自然昇温実験

Fig.26 ① MH 自然昇温実験結果 -78 ℃ ~ -60 ℃の温度域

MH試料	仕込み重量【g】	取り出し重量【g】	MH内のメタン 重量【g】	MHのメタン 占有率【%】	
ガス回収用	4165.6	4168.8	3.2	69.2	
経過時間【s】	測定回数【n】	温度【℃】	重量【g】	Forward [kW]	Reverse [kW]
0	0	-196	3660	_	_
80	1	-172	3659	0.78	0.45
160	2	-166	3657	0.74	0.38
240	3	-159	3658	0.69	0.33
320	4	-154	3659	0.69	0.33
400	5	-152	3658	0.60	0.22
480	6	-148	3659	0.64	0.23
560	7	-146	3659	0.61	0.23
640	8	-144	3658	0.61	0.24
720	9	-143	3659	0.63	0.27
800	10	-141	3658	0.53	0.12
880	11	-138	3659	0.69	0.35
960	12	-137	3658	0.62	0.20
1040	13	-135	3658	0.70	0.36
1120	14	-133	3659	0.70	0.34
1200	15	-131	3659	0.69	0.26
1280	16	-129	3658	0.65	0.24
1360	17	-127	3658	0.66	0.29
1440	18	-126	3658	0.68	0.32
1520	19	-124	3658	0.69	0.39
1600	20	-122	3658	0.60	0.24

Table.10 ガス回収をしながら行った MH 試料へのマイクロ波照射実験結果

Fig.27 ガス回収をしながら行った MH 試料へのマイクロ波照による 重量変化と温度変化

Table.11 ガス分析結果

質量	測定室空気比	ガス第一回収元素比	ガス第二回収元素比	ガス第三回収元素比
16平均(酸素原子0又はメタンCH4)	0.019	0.034	0.033	0.068
32平均(酸素分子O ₂)	0.173	0.144	0.160	0.151
28平均(窒素分子N ₂)	0.715	0.712	0.702	0.637
(回収16-空気16)/ 空気16	-	0.791	0.724	2.591
総 圧【Pa】	4.15E-03	4.21E-03	2.85E-03	4.31E-03
備考		1Lガスバックで分析	1Lガスバックで分析	2Lガスバックで分析

Fig.18より、大気圧下において、MHは、温度域② ~ ③において安定であり、断熱 状態では熱分解を起こさない。実際には、実験は外界から圧力容器壁面を通して熱伝導 がある。この侵入熱は、周辺が高く中心部が低い温度分布を形成する。即ち、温度測定 を行っている試料上面中心の温度は、容器壁と接している側面や底面に比べて昇温が遅 れる可能性がある。

Fig.25 は、周囲からの熱侵入による MH の熱分解を示している。重量変化 Δw は、 Δw = w「霜付き」-w「MH 熱分解によるメタン開放」である。MH の熱分解温度に近い-80 ℃ 付近より、試料の重量低下が停止した。これは大気中からの霜付きによる重量増加と MH の熱分解に伴うメタン放出による重量減少が釣り合ったためと考えられる。重量変 化の時間微分 $\Delta w / \Delta t$ は -100 ℃付近に変曲点がある。霜付きは外気の湿度によって決ま る。特に -100 ℃以下では、重量変化が線形であり、これは霜付きの速さが外気の湿度 に比例しており、この温度における飽和蒸気圧は極めて低いことから、外気中の水分は ほとんどすべて吸着する。-100 ℃ までの線形増加は、単純な霜付きによる重量増加で ある。-100 ℃付近から、 $\Delta W / \Delta t$ が減少してきている。よって、試料上面中央付近が -100 ℃ 以上の時、試料は部分的に熱分解が始まっている可能生を否定出来ない。

したがって、-100 ℃よりも 20 ℃ 低い -120 ℃ を温度上限として、マイクロ波印加実験を行った。

マイクロ波を10秒間照射し、温度と重量を測定する作業を20回行い、1回の実験と した。Fig.23より、MHと氷試料にマイクロ波を照射した実験は全て-120℃以下で 20回の測定を終え、実験を終了した。-120℃以下の温度域においてMHは安定領域 にあり、熱分解は起こさない。

Fig.24 より、マイクロ波を照射した MH 試料は最初の 10 s の照射によって、1.1 g 程度の重量低下を示した。2回目以降のマイクロ波照射では重量低下は誤差の範囲で0である。

Fig.28 より、マイクロ波を照射された熱分解しない温度域の MH 試料から得られたガ スからメタンを確認した。以上より、試料の重量低下はマイクロ波の仕事の作用による MH の分解によってメタンがガス(気体)として解放されたものであると断定できる。

2.7 解析

-196 ℃付近の低温にある MH が分解されると H₂O は氷に固相—固相変化を起こすと 仮定する。

メタンハイドレートが 5.75 H₂O(水)と CH₄(ガス)に分解するとき、必要なエン タルピーは $\Delta H^0 = 54$ kJ/mol [50]である。5.75 H₂O + CH₄ = 119.5 g/mol より、ケージ占有 率 100%、34.6 g(H₂Oが 30 g、CH₄が 4.6 g)の MH を分解するには、

$$54 \text{ kJ/mol} \times 0.29 \text{ mol} = 15.6 \text{ kJ}$$
 (2)

より、15.6 kJのエネルギーが必要である。試料は低温であるから水から氷へのエネル

ギーで補正する。 H_2O (水) → H_2O (氷) は-5.5 kJ/mol at 0 ℃である。過冷却ではエントロピー差が変わるが、一般に水と氷のエンタルピーはエントロピーより 2 桁大きいので、温度による差は小さいとする。水 30 g が氷になるには、

-5.5 kJ/mol × 30 g/(18 g/mol)

$$= -9.2 \text{ kJ at } 0 \text{ °C}$$
 (3)

より、-9.2 kJ at 0 ℃が必要となる。34.6 gの MH が氷に変わった時のエンタルピー差は、

$$(2) + (3) = 6.4 \text{ kJ} \tag{4}$$

より、6.4 kJ であり、グラム単位では、

$$6400 \text{ kJ} / 34.6 \text{ g} = 185 \text{ J/g}$$
(5)

より、185 J/g となる。同温度の MH と氷のエンタルピー差は、

$$437 J/g - 333 J/g = 100 J/g$$
 (6)

より、100 J/g であり、MH から氷への変化の過程で供給されるため、0 ℃以下の MH が 分解され、氷になる過程で外部から供給しなければならない正味のエネルギーは、

$$185 J/g - 100 J/g = 85 J/g$$
(7)

より、85 J/gとなる。

試料は全てハイドレートになっていると仮定し、MHのケージ占有率が47.6% (MH 試料2相当)だとすると、85 J/g × (水 30 g + メタンガス4.6 g×0.476)より、2736 J が試料の分解に必要なエネルギーである。

実験1サイクル当たり、マイクロ波電力として 500 W、10 秒間で 5000 J を発信して いる事から、1サイクルで試料を分解可能な量のエネルギーを発振していることになる。 しかし、閉鎖型のマルチモードのマイクロ波照射装置に接続した方向性結合器の反射波 は、炉内の負荷と反射多体の位置、周波数の揺らぎによる変化が大きい。このため有効 電力には誤差が大きい。本実験では、進行波電量 500 W に対し、反射波として、電力 200±50 W が観測されている。

Fig.24 より、2回目以降のマイクロ波照射においては氷とハイドレートの間に有意な 重量変化の差は見られない。しかし、MH 試料は2度目のマイクロ波照射の際に、1度 目に準ずる昇温を示したことから、試料中にMH は存在しており、少なくともマイクロ 波からエネルギーを受け取ったと考えられる。重量低下を確認できないのは試料中にガ スの通り抜けられる気孔が無かったため、もしくは氷結結露による重量増加にガス開放 による重量低下が打ち消されてしまったためと考えられる。

液体窒素温度-196 ℃の熱的安定状態にある MH に対し、マイクロ波を 500 W で 10 秒間照射すると、重量減少を示したことは上記している。実験は-196 ℃から -120 ℃の範囲で行われ、この温度域の飽和水蒸気量は 0 である事から、水分子はハイド レート構造から氷へと固相—固相変化を起こすことが考えられ、実質的な重量低下には 寄与しないと考えられる。 Fig.27,28 及び Table.11 による成分分析の結果、測定室の空気中にはメタンは含まれて いないと仮定し、質量 16 の酸素原子が成分比で 0.019 存在していることが分かった。 これは主に四重極形質量分析計による測定中に酸素分子が電離することで観測したも のであると考える。それに比べ、ガス回収試料では「第一」から「第三」まで、全ての 質量 16 の比において酸素以外の成分である、質量 16 の存在を認めた。

質量 16 の分子はメタンであることから、重量低下はメタンによるものであったと断定する。

Table.10より、1回目のガス回収は-172 ℃以下で行われ、2回目のガス回収は -166 ℃以下で、3回目のガス回収は-159 ℃以下で行われた。大気圧中のメタンの融点 は -183 ℃、沸点は -162 ℃ である。本来であればメタン分子が固体や液体の状態を示 す温度域でメタンをガスとして回収した。これは、熱平衡や準静的課程では説明できな い事象である。よってこの事象は、マイクロ波の非熱的効果による分解であり、非平衡 過程である。

第3章 多粒子系の不可逆過程

3.1 熱力学と不可逆性

蒸気機関は、「火の機関」としてトーマス・セイヴァリが発明し、以降、トーマス・ ニューコメン[51]やジェームズ・ワット[52]の手によって改良が加えられ、機関車や紡 績の動力部に用いられることで産業革命を興した[53],[54]。この蒸気機関に用いられる 「物質の流れ」と「熱」という物理的事象と、アイザック・ニュートンが定式化した古

典力学的決定論との間には、不可逆過程という経験に基づく大きな溝が残されている。

近代熱力学の泰斗、イリヤ・プリゴジンは、不可逆過程の謎に生涯をかけ、非補償熱の概念など、多面的に取り組んでいた[55]。ヘンリー・アイリングは反応速度論を提唱し、不可逆過程の統計力学的な方法論を確立した[56],[57]。そこに活性化エネルギーという大きな仮説が設けられており、この反応速度論に基づく理論と実験が行われてきた[58]~[61]。

完全に熱から独立した仕事の例として、アンペールの法則 $2\pi r H = I$ (r:経路半径、 H:磁場の大きさ、I:電流)に従った電流とコイルによる電磁力がある。この電磁力 は変圧器(電磁誘導によって電圧を変える)などによって、仕事から仕事へ変換される が、その過程で抵抗損失という熱も生む。電気抵抗によって積極的に仕事を熱に変える 場合は、単なる熱源 $W = RI^2t = Q$ (R:抵抗)であり、これをジュール熱と呼ぶ。誘 電体の誘電損失も、熱に変わるだけだと考えることが電子レンジなどのマイクロ波加熱 では一般的である。

ここで著者は、周波数分散がない単色性(1つの周波数成分のみ)高周波であり、マ クスウェル=ボルツマン分布のような広がりを持たないことから、最小のエントロピー を持つ理想的なマイクロ波を想定すれば、すぐには熱に変換されず、乱雑な分子運動の 励起を発現させると仮定した。さらに、完全な力学的仕事を誘電物質に供給できるのは、 唯一マイクロ波との仮説を置いた。なぜなら、マイクロ波より短い波長域の電磁波(赤 外線など)は物質の表面で吸収され、熱に変化してしまい、マイクロ波より長い波長(FM など)は物質を通り過ぎてしまう[62]。

マイクロ波の減衰距離は照射対象によって異なるが、ある程度、試料(誘電体)の内 側まで進行して熱に変わる事が知られている。つまり系内部からの発熱であり、炎など、 外部からの熱伝導とは、全く別の過程による加熱であると考える。

さらに、途中の経路は様々であるが、マイクロ波という低エントロピーの場が物質系の熱運動とどのように関連し、どのようにして不可逆変化に対応するエントロピーを生成するかの議論は行われていない[63]。

マイクロ波が加熱に使われるようになったのは 1945 年以降であり、マイクロ波の非 熱的効果(マイクロ波を用いることによる反応速度の向上)が議論の対象になったのは 1980 年代以降であった[64]。イリヤ・プリゴジンは、1980 年頃まで、研究を続けてい たが、その教科書は、直流場に於ける誘電性に言及しただけで[12]、マイクロ波については、全く考慮を払っていなかった。同様に統計力学の泰斗チャールズ・キッテル[65] も、量子化学・量子物性に興味が集中しており、マイクロ波という光子エネルギーの極端に低い現象は取り扱っていない。

炎やヒーターを熱源として物を加熱する場合、対象物が固体であれば、この外部熱源 からの熱伝導、熱伝達、 輻射によって昇温する。液体であれば、さらに内部の対流に よって熱が対象物内に拡散することで系全体を昇温させる。輻射について、赤外線など 系表面で光子から分子の熱振動に変化する場合、表面から内部に向かう温度勾配による 熱伝導が支配的になる。

加熱された物質からは物理学の基礎であるシュテファンボルツマンの法則によって、 絶対温度をTとして、T⁴に比例した黒体輻射としての電磁波が放射される。しかし、 黒体輻射は、広い連続的な周波数スペクトラムを持つ輻射であり、マイクロ波ではない。

また、誘電物質中の分子は、熱振動や結晶中のそれぞれの粒子の向きが均一で無いな ど、個々として乱雑な運動や方位を持つ(実空間でx, y, z の 3 方向、速度空間でv_x, v_y, v_z の 3 方向、計 6 軸)ことから、その誘電特性の方向も不揃いであり、マイクロ波によっ て均一で斉次な力を物質が受け取っても、物質中で乱される。乱れた位相と波数は励起 したマイクロ波とは全く異なり、マイクロ波によって物質中に誘起された荷電粒子の振 動からは、元のマイクロ波は発信しないし、マイクロ波によって加熱された物質から、 加熱に使用したマイクロ波(2.45 GHz の電磁波)を取り出すことは出来ない。

よって、マイクロ波から物質へのエネルギー流れは不可逆的であり、マイクロ波は物 質の内部には新たなエントロピーを生成する。

これまで物理学の謎とされてきた、熱力学第二法則、いわゆる時間の矢(不可逆性) とエントロピーの増大は、マイクロ波というエントロピー最小の仕事と分子運動の自由 度という自然に備わった性質から説明できる。

本論文は、熱力学にマイクロ波を導入することによって、エントロピー生成と不可逆 性の発生の機構を、基本的な運動方程式と、物質の散逸性という仮説をおき、論ずる。

また、マイクロ波のエネルギーが、プリゴジンの唱える非補償的変換に相当する損失 を除いて、直接にギブズの自由エネルギーに供給される過程を理論的に解析する。

3.2 質点から単結晶多粒子系へのマイクロ波の適用

単粒子へエネルギーを与える手段として、周波数分散がない単色性(1つの周波数成 分のみ)高周波であり、マクスウェル=ボルツマン分布のような広がりを持たないこ とから、最小のエントロピーを持つ理想的なマイクロ波を仮定する。

マイクロ波(2.45 GHz の単色性高周波[11],[13])に感応性を持つ誘電体である剛体 球質点の運動方程式は、

$$\frac{1}{2\pi}I\frac{d\Omega}{dt} = \vec{P}\times\vec{E}$$
(8)

で表すことができる。ここで、I, $\vec{\Omega}$, t, \vec{P} , \vec{E} はそれぞれ、慣性モーメント、多極子回転角速度、時間、多極子モーメント、及び、電界ベクトルである。

式(8)の左辺はエネルギーを受け取った剛体球の運動であり、右辺の $\vec{P} \times \vec{E}$ は電界に よって与えられた剛体球の運動量である。

 $\vec{\Omega}$ が等速・同位相である相互作用のない n 個の粒子からなる閉鎖系を考える。その 運動は、式(8)の重ね合わせとして、

$$\frac{1}{2\pi} \sum_{j=1}^{n} I_j \frac{d\Omega_j}{dt} = \sum_{j=1}^{n} \vec{P}_j \times \vec{E}$$
(9)

で記述される。ここで j は粒子数を加算する添え字である。

式(9)の左辺は粒子がマイクロ波電場に追従して起こす運動、右辺は場が粒子に与えたエネルギーで、損失項を含まないので可逆的である。

次に、実際の系をモデル化した「多粒子から成る単結晶の閉鎖系」に議論を拡張していく。

まず、4点の基本的仮定を設ける。

- 仮定1. 系は有限な温度であり、各粒子は相互作用を持って熱運動 (温度 T > 0 Kのボルツマン分布)を行っている。
- 仮定2. 各粒子の分極は結晶または高分子中の原子や分子の配列、 多極子モーメントの絶対値はボルツマン分布に依存し、

 $(f_{(\Omega_i)}\vec{P}_i)$ で表される。

仮定3.マイクロ波の波長λはmm~cmのオーダー、分子や結晶の格子間距離などの 特性長Lはμm~nmのオーダーで、

マイクロ波波長に比べて十分に小さい。

仮定4.マイクロ波の周波数は単色(monochromatic)である。

以上の仮定から、マイクロ波は結晶中のすべての粒子に、等位相、等振幅の最小の エントロピーから成る交番電場を与え、仕事として作用するものと考える。

仮定1および2から、位相空間(実空間軸および速度空間軸から成る空間)において、 仮定3、4で規定されたマイクロ波は均一であるにもかかわらず、物質の荷電粒子の応 答、即ち、受け取る運動量は、粒子ごとに異なることを示している。つまり、マイク ロ波下で物質の荷電粒子への運動量の伝達は、エントロピーの増大を伴うことが論理 的に説明できる。故に、マイクロ波による揺動は、再び、マイクロ波には戻れないと 考える。これによって、電磁気学に基づく運動方程式という決定論と、多粒子系にお ける熱力学第二法則は、対立概念ではなく、連続したエネルギーの変換過程として理 解することが出来る。これは、マイクロ波を新しいツールとして、永らく近代物理学 の謎とされてきた「多粒子系の時間の矢」という問題を、実験によって計測すること ができる可能性を示している。

単結晶中におけるエネルギーの不可逆性は、式(9)に、物質の持つ散逸性を分布関数 $f_{(\Omega_i)}$ という表式で与えてから積算するという、統計力学の基本仮定を適用して、

$$\frac{1}{2\pi} \sum_{j=1}^{n} f_{(\Omega_j)} I_j \vec{r}_j \cdot \frac{d\vec{\Omega}_j}{dt} - T \varDelta S = \sum_{j=1}^{n} f_{(\Omega_j)} \vec{r}_j \cdot \left(\vec{P}_j \times \vec{E}\right) - T d_i S \tag{10}$$

と記述する。r_jは各粒子jの空間的な位置を示す。

式(10)より、左辺第一項がある温度を持った多粒子から成る単結晶がマイクロ波に起因して行う運動である。

左辺第二項は、粒子の運動とマイクロ波電場の相互作用から、エネルギーの変換に よって系内部に生成されるエントロピーである。

左辺の第一項、第二項を合わせて系の*dG*である。

右辺第一項は、ある温度を持つ単結晶がマイクロ波を吸収し変換した運動エネルギーであり、右辺第二項の*d_iS*は、多粒子系から生まれた熱流または反応に伴うエントロピー生成である。

3.3 多結晶系の設定とマイクロ波による発熱過程

マイクロ波はシングルモード(1軸方向にのみ振幅・伝搬)、2.45 GHzの単色性高周 波として、電界の方位は一定とする。一つ一つの単結晶は、巨視的に感応性を持ち、 マイクロ波の減衰距離に比べて小さく、一様な電界を受ける等圧下の閉鎖系の誘電体 とする。

また、多結晶系は断熱系とする。初期状態において熱力学的平衡状態 $T_0 = T_1$, $\Delta T = 0$ にあるものとする。

そして、多結晶構造の一成分物質を系として、系の大きさ(*L*)はマイクロ波の波長(λ)に比べて十分に小さい($L << \lambda$)とする。

系を構成する単結晶はメゾスケールオーダーであり、結晶ごとに多極子モーメント の方位が巨視的に異なるとする。概要図を

Fig.29 (a) に、結晶方位とシングルモードのマイクロ波に感応性をもつ単結晶について Fig.29 (b) に示す。

n 個の粒子からなる単結晶が N 個集合して、系(多結晶)を形成しているとき、それぞれの単結晶に式(10)を適用して、系内の発熱過程を表すと、

$$\sum_{k=1}^{N} \left\{ \frac{1}{2\pi} \sum_{j=1}^{n} f_{(\Omega_{j,k})} I_{j,k} \vec{r}_{j,k} \cdot \frac{d\vec{\Omega}_{j,k}}{dt} - T_{k} \Delta S_{k} \right\}$$
$$= \sum_{k=1}^{N} \left\{ \sum_{j=1}^{n} f_{(\Omega_{j,k})} \vec{r}_{j,k} \cdot \left(\vec{P}_{j,k} \times \vec{E}\right) - T_{k} d_{i} S_{k} \right\}$$
(11)

となる。ここで k はある単結晶を意味する。

式(11)を図化したものが Fig.30 である。系の中で揺動するのはマイクロ波の振幅に 対して結晶方位が垂直方向に交わる単結晶(Fig.29 (b)内の橙色の単結晶)のみであ る。揺動した単結晶が局所的に発熱(Fig.30内の赤色の単結晶)し、周囲の単結晶 (Fig.30内の青色の単結晶)へ熱伝導 $T_2 \rightarrow T_1$ を介して系全体が昇温する。

Fig.30 多結晶系の発熱過程

Fig.30より、断熱閉鎖系の多結晶体内部に存在する、シングルモード(1軸方向のみの振幅、電子レンジなどは壁に当たり乱反射しながら対象物にマイクロ波の場を与えるためマルチモードと呼ばれる)に感応性を持つ単結晶を構成する粒子群(熱平衡)がマイクロ波から運動エネルギーを受け取る過程は、各粒子が「ある熱平衡の熱分布(速度分布)」を持つ事から、粒子ごとにばらばらの(速度分布に準ずる)エネルギーを受け取る過程が不可逆過程の根源となる。

そして系全体で見たときエネルギーを受け取る部分に注目すれば、Fig.30内の赤い単結晶からエントロピーが新たに生成されたことが考えられる。生成されたエントロピーはエントロピーの増大と共に熱に変換され、系は発熱したものと考える。

3.4 導電体について

電子レンジの内壁は金属(導電体)である。金属のような自由電子を持つ導電物質 は、電磁波を自由電子が受け、その運動が電磁波を再放射する。これは金属表面にお ける電磁波の反射である。

電子レンジ内壁においては、マイクロ波は多重反射となり様々な角度から試料に入る。つまり、金属壁の様な自由電子を有する物質の表面からは、マイクロ波が再放射 される。ただし、電気抵抗のため、再放射のたびにマイクロ波はエネルギーを損失し、 最終的には熱に落ちる。

マイクロ波を用いた際の導電体の取り扱いは、再放射可能であるから可逆的である と論じる場合と、抵抗損失の存在から不可逆的であると論じる場合があり、マイクロ 波物性化学というジャンルが形成され、多様な研究が行われている[66]~[68]。

第4章 マイクロ波加熱の非熱的効果と不可逆的変化

4.1 マイクロ波加熱の非熱的効果

本論第2章の実験結果は、文中で示したように、熱的安定状態にある MH に対して、 潜熱分のエネルギーを仕事のエネルギーとして供給し分解するという仮説を実証する 実験である。これまでのマイクロ波化学では、この様な現象を「マイクロ波の非熱的効 果」と呼んでいる。これまでにも、1980 年代から、高強度のマイクロ波照射における無 機物の固固、固気の特別な反応が報告されている。まず、アルミナ等の誘電性セラミッ クスがタンマン温度の 2/3 程度の低温で迅速に焼結、微粒子化、活性化エネルギー低下 が報じられ[1]、マグネタイトなどの磁性粉末では、ナノ粒子化ないしアモルファス化、 さらに、製鉄における低温還元や銑鉄時の純度の向上[2]~[5]が報告されている。有機合 成に於ける低温反応や反応促進の向上など、分子化学、さらには生命化学にまで、加熱で は得られない化学変化・相変化に対する報告が数多く寄せられている[6]~[8]。

しかし、その発生の機構とその実証実験は断片的であり、必要十分条件を満たす実証 実験は、未だ行われていなかった。

本論文では、始状態 A でマイクロ波に対して有効な感応性を持ち、終状態 B でマイクロ波に感応性を持たず、始状態 A と終状態 B の中間段階に関して、マイクロ波に感応性を持つ成分と待たない成分が共存する系を選び、マイクロ波を印加した。

具体的には、第2章で示したように始状態Aとして、メタンハイドレートを選択した。このメタンハイドレートは、常温常圧では自発的に分解を起こすが、氷点下-76℃以下では分解しない。この実験系は、第2章に示す様に、マイクロ波による物質の変遷を、質量変化でモニターし、重量(質量)で変換量を定量分析し、温度を計測し平衡相図と比較、終状態にマイクロ波が作用しないことを確認した。重量計と温度計(極低温熱電対)という、最も標準的な測定手段だけで、必要十分条件を満たす実験系を構成し、マイクロ波効果を証明した。この実験結果は、マイクロ波効果に適した材料系を扱うことで、これまでの様に熱源を用いることなく物材を加工できることを示唆している。カーボンニュートラルという社会の要請に応える最も基盤となる技術である。

4.2 非補償的変換

プリゴジンの教科書によれば、非補償的変換は、不可逆過程に伴って生成されるエントロピーであると定義されている[12](詳しくは第3章特に、式(3.4.5)~式(3.4.7)),[69],[70]。

本論文はマイクロ波の電磁場において、物質中の荷電粒子が受ける運動量へのエネル ギー変換について研究する物である。プリゴジンの教科書では、この様な高周波外部電 磁場については取り扱っていない。ここでは、電磁場と物質の相互作用を、熱力学と結 合した論理を展開する。 物質中の荷電粒子は、マイクロ波の電磁界に感応し、周波数が揃った斉次運動(振動) を励起すると仮定する。励起された運動に関して、マイクロ波の電磁場が、直接に熱力 学的な作用を及ぼすのか、中間段階(バッファーとなるようなエネルギー転移の形態) があるのかという問題は、マイクロ波化学の分野では、ほとんど論じられていない。

マイクロ波電磁場中に、感応性を持つ始状態の物質 A を置くと仮定する。物質は系から運動エネルギーを獲得する。この運動エネルギーの周波数が拡がる機構について、 定性的な議論を試みる。

等圧下の熱浴中にある閉鎖系にマイクロ波照射を行った場合のエネルギー保存則の 式は、

$$G = U + pV - TS + W_{\mu} = H - TS + W_{\mu}$$

$$\Delta G = dU + pdV + Vdp - TdS - SdT + W_{\mu}$$

$$= dQ - pdV + pdV + Vdp - Td_{e}S - Td_{i}S - SdT + W_{\mu}$$

$$\Delta G = -SdT - Td_{i}S + W_{\mu}$$
(12)

である。圧力 p は一定で、閉鎖系では $Td_eS = dQ$ であることを用いた。ここで、 ΔG は 不可逆変化に必要な系のギブズ自由エネルギー変化、S、T、Q、は系のエントロピー、 熱力学的温度、熱エネルギー、 W_μ は外部から供給されたマイクロ波によって系内に励 起された運動エネルギーである。また、 Td_eS は外界との物質及びエネルギー交換によ るエネルギーであり、 Td_iS は不可逆過程における非補償的に使用されたエネルギーであ る。

式(12)は、「系の境界から供給されたエネルギー W_{μ} が、自由エネルギーの変動 ΔG を有 効成分として、物質の温度上昇分に伴う熱 $S\Delta T$ 及び非補償的変換 $\Delta_i S$ が損失になる」こ とを示している。また、 $d_i S$ と W_{μ} についてはエネルギーの経路によって変わるため時 間微分が可能である。

式(12)に対応する最も単純な状態変化は、融点・沸点における潜熱過程である。

4.3 マイクロ波加熱による潜熱過程

マイクロ波を吸収する固体の物質 a が、マイクロ波のみからエネルギーの供給を受け、

$$W_{\mu} = \varepsilon_0 \varepsilon^{"} E^2 exp(i\omega t) \cdot N_a \tag{13}$$

マイクロ波吸収のない固体の物質 b に相変化するモデルを考える。

ここで、 ε_0 , ε'' , E, i, ω, t , はそれぞれ、真空誘電率、複素比誘電率の虚部、電場、 複素数、角周波数、及び、時間である[11], [13]。

それぞれのモル数を N_a 、 N_b 、始状態として $N_a = N$ 、 $N_b = 0$ 、終状態として $N_a = 0$ 、 $N_b = N$ 、とする。

系は温度 T_0 の熱浴と熱平衡状態にある、等温・等圧変化 $\Delta T = 0$, dp = 0の閉鎖系 $N = N_a + N_b$ とする。また、熱浴はマイクロ波のエネルギーを無損失で通過させるも

のとする。 $dQ = C_p dT = 0$ であり、 $dQ = T d_e S = 0$ である。($d_e S$ は外界との物質及び エネルギー交換によるエントロピー変化 [12],[69],[70]) 故に、融点・沸点時の潜熱過 程において、式(12)は、

$$\Delta G = -T \Delta_i S + W_{\mu} \tag{14}$$

と記述できる。

不可逆過程に必須のエネルギー損失をゼロとすれば、相変化は可逆的に起こる。完 全な可逆過程であるなら、物質は吸収したマイクロ波と等しいマイクロ波を相互的に 放出しなければならず、これではマイクロ波が物質を素通りする事と等価である。よ って、マイクロ波過程では、熱力学第二法則より、必ず不可逆過程に関わるエネルギ ー損失 Td_iS の発生を伴う。このエネルギー損失は、物質 a から物質 b への相変化に 伴う物質の変化、すなわち化学反応の親和力 A と反応速度 $d\xi / dt$ の積より、

$$T\frac{d_iS}{dt} = A\frac{d\xi}{dt} = \mu_a \frac{-dN_a}{dt} + \mu_b \frac{dN_b}{dt}$$
(15)

が、担っている。ここでµはそれぞれの化学ポテンシャルである。系の相変化に基づく ギブズの自由エネルギー変化 Δ*G* は状態量であり、

$$\Delta G = \Delta N_{\rm b} G_{\rm b} - \Delta N_{\rm a} G_{\rm a} \tag{16}$$

で定義できる。

このモデルの初期状態を(a)、中間状態を(b)、終状態を(c)として、Fig.27 に示す。

Fig.31 マイクロ波を用いた2成分相変化

Fig.31 より、メゾスケールの不均一構造を持つ物質 a は(b)に示すように不可逆的に物質 b へ返還される。物質 b だけとなった系はマイクロ波に対し感応性を持たないためマイクロ波を透過する。

4.4 マイクロ波のエネルギーの分配比

実際の有限時間で起きる反応では、マイクロ波投入エネルギーXは、

$$W_{\mu} = \int P_{\mu} dt \tag{17}$$

であるから、反応時間が短いと、熱伝達或いは物質拡散によるエネルギー供給がほとん ど起こらない状態が出来る。

マイクロ波は、これらの拡散を必要としないため、短時間でも、十分にエネルギー供給 が行われ、*ΔG*の発生が起きる。

供給されたマイクロ波電磁界の全てが、物質中の *ΔG* に変換されるのではない。マイ クロ波過程における正味の化学変化の効率は、

$$\eta_0 = \frac{\Delta G}{W_{\mu}} \tag{18}$$

である。等温過程では、

$$\eta = \eta_0 \left(1 - \frac{T d_i S}{W_\mu} \right) \tag{19}$$

である。

4.5 実験から求めるTd_iSと、Td_eSへの分配

第2章のマイクロ波によるハイドレート分解実験より、分解に使われたエネルギーと 発熱量から、不可逆過程による物質移動(MH→氷)に使われたエネルギー Td_iS と、最 終的に熱へ移行したエネルギー Td_eS をそれぞれ算出し、以下に示す。

MH 試料 1 及び 2 について、「MH から氷への分解に必要なエネルギー85 J/g× MH 重量 g×(重量低下分のメタン重量 g/MH 試料に入っていたメタン総量 g)」より、 1 回目の分解に必要なエネルギーを個別で算出したところ、

$$85 \times 31.4 \times \left(\frac{1.2}{1.4}\right) = 2287.7 \text{ J}$$
 (20)

$$85 \times 32.2 \times \left(\frac{1.0}{2.2}\right) = 1244.0 \text{ J}$$
 (21)

を得られた。式(20)より、MH 試料 1 で、2287.7 J、式(21)より、MH 試料 2 で 1244.0 J が必要であった。

分解に必要なエネルギーが、不可逆過程による物質移動(MH→氷)に使われたエネ ルギー $Td_iS = \sum_k \mu_k dN_k$ と、最終的に熱Qへ移行したエネルギー $Td_eS = dQ$ に分けられ ると仮定する。ここで μ_k 及び dN_k は化学ポテンシャルとモル数の変化である。

1回目の測定でMH 試料1の昇温は8℃、MH 試料2の昇温は7℃であった。解放されたメタン分子も同様の昇温の後に解放されたと仮定して、メタンガスの比熱を

2 J/(g・ \mathbb{O} 、試料の比熱は分解後の氷の比熱 2.1 J/(g・ \mathbb{O} を採用し、重量は純水重量 30 g とすると、「重量低下分のメタン重量×メタン比熱×試料昇温 + 試料重量仮定 30 g× 氷比熱×試料昇温」より、それぞれの試料の昇温に使われたエネルギーは、

$$1.2 \times 2 \times 8 + 30 \times 2.1 \times 8 = 523.2$$
 (22)

$$1.0 \times 2 \times 7 + 30 \times 2.1 \times 7 = 455.0 \text{ J}$$
(23)

であった。

マイクロ波のエネルギーを受け取り、MHの分解という不可逆変化を発現し、その後に昇温としてエネルギーを観測できたと考える。式(22)より、MH 試料1で523.2J、 式(23)より、MH 試料2で455.0Jが、それぞれ、外界との物質及びエネルギー交換に よるエントロピー変化d_eSを含む、最終的に熱へ移行したエネルギーTd_eSである。

試料の分解に使用されたエネルギーの総量と、発熱に使われ、熱電対と試料の熱交換、熱平衡によって観測された*Td_eS*との差が、*Td_iS*であるとして、

$$2287.7 - 523.2 = 1764.5$$
 (24)

$$1244.0 - 455.0 = 789.0 \text{ J} \tag{25}$$

を算出できた。式(24)、式(25)より、不可逆過程による物質移動(MH→氷)に使われ たエネルギー*Td_iS*は、MH 試料 1 で、1764.5 J、MH 試料 2 で 789.0 J であった。割合に 変換するとそれぞれ、

MH 試料 1 で、*Td_eS* が、22.9%、*Td_iS* が、77.1%

MH 試料 2 で、 Td_eS が、36.6%、 Td_iS が、63.4%

である。

このことから、マイクロ波から物質に供給されたエネルギー総量の内、7割は不可逆 過程の物質移動に使われ、残り3割が不可逆変化後の発熱過程に用いられると解釈で きる。今後、マイクロ波の照射方法をマルチモードからシングルモードへ変更するこ とでマイクロ波の有効エネルギーを交えた非補償的変換*d_iS*の議論へ発展できる可能 性がある。

第5章 要約と考察

実験の要約

第2章は、MHの分解実験によるマイクロ波の物質への特別な作用を示している。

【メタンハイドレートの大気圧下、大気からの熱伝導による自然昇温による分解】

液体窒素温度のハイドレートは-76 ℃まで昇温した後に分解された。-76 ℃以下の温度 であれば大気圧下でハイドレートは安定であり、熱分解は起こらない。 これは、Fig.25 及び Fig.26 の大気圧中での自然昇温実験によって確認された。

【メタンハイドレートの大気圧下のマイクロ波分解】

マイクロ波照射実験では、平衡相図上の安定領域 (-196 ℃~-178 ℃の温度域)において、 MHの重量減少を測定した。この重量減は、メタンハイドレート中のメタンガス重量に 等しく、放出ガスの成分分析の結果、メタンガスの放出と確定した(Fig.23,24,27,28 及 び Table.11)。

実験の考察

マイクロ波照射では、平衡相図上、分解しない低温度域で、マイクロ波の電場によっ てメタンハイドレートが受けた運動エネルギーは、昇温(顕熱への移行)より、相変化 (潜熱への移行)が大きい。

これは、対象となる試料の温度に係ることなく不可逆過程が発現可能であることを実験的に示したものである。

理論の要約

第3章および第4章は、実験結果の熱力学的解釈を示す。

3章ではエネルギー流れの不可逆性とエントロピー増大による発熱過程 ($\Delta G = 0$) について述べた。[71]

4章では、物質の不可逆的な変化 ($\Delta G \neq 0$) について注目して述べており、特にマ イクロ波を用いた過程について、非補償的変換 $d_i S$ という損失と、音波増大と熱緩和の 競合より、これまで熱エネルギーだけでは説明のつかなかったマイクロ波固有の物理現 象である「マイクロ波の非熱的効果」の発現理由について述べた。[74]

マイクロ波過程で供給さるエネルギーのうち、直接に自由エネルギーに移行することで生成されるエントロピー d_iS と、熱に向かう d_eS の分配比を実験結果から推定し、 $Td_iS: Td_eS = 7:3$ (誤差 10%)が得られた。比は、本研究で用いた始状態のみにマイクロ波が作用する系を用いたことで、はじめて算出できたものであり、マイクロ波効果を定量的にもとめた最初の報告である。

【マイクロ波による揺動と不可逆過程】

断熱閉鎖系にある有限温度の熱平衡にあるアボガドロ数オーダーの粒子群を想定 する。それぞれの粒子に仕事を行う「場」が空間に一様に存在し、それぞれの粒子に 仕事を与えるとき、粒子は場から仕事を受け取ることで新たな運動を起こす。熱平衡 にある粒子がマクスウェル=ボルツマン型の速度分布を持つとき、粒子は正規分布の 速度の広がりを持つ。速度のばらばらな粒子群が一様な場から仕事を受け取るとき、 粒子が受け取ることのできる運動量は、粒子の速度と場の方位の内積または外積であ り、粒子ごとに違う。この時、空間的に一様な場は、分布を持たないからエントロピ 一極小であり、場から粒子群がエネルギーを受け取る過程は、新たなエントロピーの 生成となる。有限温度(というバラバラな運動量)を持った粒子群(多粒子系)がエ ネルギーを受け取るという事象そのものが、系の新たなエントロピーの生成である。

乱雑になる(生成された新たなエントロピーが増大する)ということと、乱雑であ る(あるエントロピーを持つ、熱を持つ)ということは、異なる論理である。

以上より、エントロピー最小の仕事を行う場から粒子群へのエネルギー流れは不可 逆的であるという理論を展開した。[73]

【マイクロ波の非熱的効果】

第4章のマイクロ波による揺動は、熱への移行(顕熱化)だけではない。エントロピーの低いマイクロ波の仕事が、系のギブズ自由エネルギー変化 *ΔG* に直接に移行する 過程がある。この仮説は、本研究において、実験的に示され、理論上の仮説から、実在 するエネルギー移行過程であることが明らかにされた。マイクロ波固有の化学反応速度 や見掛けの活性化エネルギーの低下といった「マイクロ波の非熱的効果」を発現させる ことは可能なのである。[72]

「マイクロ波の非熱的効果」は最小のエントロピーを起点に持つ物質変成であり、散逸過程までを含めた熱力学で説明の出来る事象であることを示した。しかしながら、散逸系熱力学の議論では、マイクロ波のエネルギーによる「音波増大」と「熱緩和」の競合を、解析的に解く方法が存在しない。今後、Stochastic thermodynamics を発展させ、 マイクロ波の非熱的効果のエネルギー分配についての議論を行っていく。[73]

【均一な場としての解釈の展開】

これまで均一なマイクロ波の電場の中における、ある物質への選択的なエネルギー流れについて論じてきた。

この論理を、さらに一般化することが可能である。例えば、生命系に適用してみる。 濃度一定の体液は、一様な場として考えることができる。その中に存在する1個の細 胞を考えるとき、濃度一定の体液から細胞内の特定の領域への物質流れ(K(カリウム) やNa(ナトリウム)の濃度差による流れ)は細胞膜を介して選択的な流れを生む。 均一なマイクロ波が試料中に分散するメタンハイドレートのみにエネルギーを供給 するように、一様な濃度を持つ体液が細胞の特定部位に K や Na を供給する過程を非補 償的変換*d_iS*と定義して、細胞内の特定部位が K や Na を供給されたことで、これまで とは違う濃度になることを、エントロピーの生成と定義すれば、生命系の不可逆過程を 解釈できる可能性がある。

【Appendix 損益分岐計算】

マイクロ波のエネルギーは全て分解に使われるものと仮定し、減衰や発生する水へのエ ネルギー損失及びエネルギー分岐は考慮しないものとして計算を行った。

メタンハイドレート1m³を分解して取り出せるメタンにより得られる、およそ 6.11 GJ の発熱量と比較して、最大で 753 MJ のエネルギーを与えることで分解できるこ とが分かった。天然ガスを使用する火力発電所の発電効率まで加味し、マイクロ波によ るハイドレート採掘が黒字であることを示した。

謝辞

本研究を進めるに当たり、主査を引き受けてくださった中部大学の行本 正雄教授、 副査の伊藤 響教授、井筒 潤准教授に深甚なる謝意を捧げます。

2019年に1週間研究室にお伺いしてハイドレート生成についてご指導いただきました、慶應義塾大学の大村 亮教授に深甚なる謝意を捧げます。

第2章のマイクロ波によるハイドレート分解実験を行うにあたり、ガス分析のため四 重極質量分析計を貸していただきました中部大学の樫村 京一郎准教授、ガス分析を手 伝ってくださいました樫村研究室の大下 瞭雄様に厚く感謝の意を示します。

ハイドレート生成の圧力容器の設計を担当してくれた 2020 年度卒業の島倉 健斗君、 実験を共にしてくれた 2021 年度の4年生、江頭 雅瑳稀君、遠藤 唯斗君、三尾 天杜君 に感謝の意を示します。また、三尾君には Appendix の損益分岐計算も手伝ってもらい ました。重ねて感謝の意を示します。

理論研究として、「第3章の多粒子系の不可逆過程」と「第4章のマイクロ波の非熱 的効果と不可逆的変化」を行うにあたり、2021年4四月より週1回開催しているマイ クロ波熱力学に特化した ZOOM ゼミより、多くの知見を得てここまで歩むことが出来 ました。共に議論いただきました、中部大学佐藤元泰特任教授、中部大学ミュオン 理工学センター平井隆司博士、永田和宏東京工業大学名誉教授に深く感謝の意を示 すとともに厚く御礼申し上げます。

ペンシルベニア大学の故 Rustum Roy 教授の遺言 "Einstei's Hidden Variables" と いう提言を源流として、コヒーレントな信号がプローブとなり、量子と古典の間に残さ れてきた溝を埋めることは、新しい物理学の誕生を促すであろう。本論文を教授の霊前 に捧げたい。

本研究は工学研究科創造エネルギー理工学院生費の助成を受けたものであります。

Appendix 損益分岐計算

〈基本的な物性値〉[74] メタン 化学式 CH4 分子量 16.04 ガス密度 0.717 g/L (0℃, 0.1 MPa) 液密度 0.422 kg/L = 422 kg/m³ (-33.4 ℃) 融点 -182.5 ℃ 沸点 -161.5 ℃

```
氷 [16]
融解潜熱 333.5 J/g
メタンハイドレート [16]
分子式 CH<sub>4</sub>・5.75 H<sub>2</sub>O
分子量 119.5
密度 0.912 g/cm<sup>3</sup> = 912 kg/m<sup>3</sup>
```

54.19× $\frac{1000}{16+6\times 18}$ = 437 J/g より、437 J/g となる。

〈メタンハイドレート1m³を氷とメタンに分解するのに必要なマイクロ波〉

メタンハイドレートの密度は 0.912 g/cm³=912 kg/m³ であることからメタンハイドレート 1 m³ 当たりの重さは 912 kg

0°C以上のメタンハイドレートが分解する場合(水+メタンになる)メタンハイドレートの潜熱は437 J/g = 437 kJ/kg であるのでメタンハイドレートを分解するために必要な熱量は

 $437 \times 912 = 398544 \text{ kJ}$

より、399 MJ である。

また、0℃以下のメタンハイドレートが分解する場合(氷+メタンになる)氷を融解す るエネルギーを消費しないので $(437 - 333.5) \times 912 = 94392$ kJ

94.4 MJ

となる。

メタンハイドレート1m³(912 kg) あたりに含まれるメタンは

含まれるメタンの質量をXとして、

 $912: X = (16 + 5.75 \times 18): 16$

119.5 *X* = 14592

X=122.1087

メタン 122 kg から得られる熱量は

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ - 802 kJ/mol

 122×10^{3}

 $\frac{10}{16} = 7625 \text{ mol}$

802 × 7625 = 6115250 kJ

メタンハイドレート1m³から、およそ 6.11 GJ の発熱量が得られる。

〈メタンハイドレート分解の損益計算〉

損益分岐計算にはマイクロ波のエネルギーは全て分解に使われるものと仮定し、減衰 や発生する水へのエネルギー損失及びエネルギー分岐は考慮しないものとする。

マイクロ波は氷に対して吸収されない性質をもつため、0℃以下のメタンハイドレート 1m³を氷とメタンに分解する場合について考える。 分解に必要な熱量 94.4 MJ をマイクロ波で与える。

以下の補表-1 に各種マイクロ波発振機の効率[75]および、メタンハイドレート 1 m³ の分解に必要なエネルギー量 94.4 MJ をマイクロ波で与えるために必要なエネルギ ーを示す。

補表-1 各種マイクロ波発信機の効率と 0℃以下のハイドレート分解に必要なエネルギー量

発振出力【kW】	発信効率【%】	出力量【MJ】	MHを壊すまでに 必要な時間【s】	発振に必要な 電力【W】	MHを壊すまでに必要 なエネルギー【MJ】
1.5	62	94.4	62934	2420	152.3
5	53	94.4	18880	9434	178.1
6	62	94.4	15733	9677	152.2
100	77	94.4	944	129870	122.6

補表-1より、マイクロ波発振機におよそ 123 MJ ~ 178 MJ のエネルギーを与えること で0℃以下のメタンハイドレート1m³を分解することができることが分かった。 これはメタンハイドレート1m³から取り出したメタンにより得られる、およそ 6.11 GJ の発熱量と比較して十分小さい数値であるため、装置の損益はプラスとなることが確 認できた。

さらに、メタンハイドレート1m³から取り出したメタンを電力に変換した際の損益について考える。

LNG ガスタービンを利用した発電の効率は 51%~57%である[76]。

1 m³のメタンハイドレートの分解に必要な 123 MJ ~ 179 MJ のエネルギーを発電する ために必要なメタンは

最高効率(発電効率 57%・必要なエネルギー123 MJ)の場合、

123000 ÷
$$\frac{57}{100}$$
 = 215790 kJ
 $\frac{215790}{802}$ = 269 mol
16 × 269 = 4304 g
最低効率(発電効率 51 %・必要なエネルギー179 MJ)の場合、
179000 ÷ $\frac{57}{100}$ = 350981 kJ
 $\frac{350981}{802}$ = 438 mol
16 × 438 = 7008 g

となり、必要なメタンは 4304 g~7008 g である。これはメタンハイドレート 1 m³ から 取り出せるメタン 122 kg と比較して十分小さい。 また、メタンハイドレート1m³から取り出したメタンにより得られる、およそ 6.11 GJ のエネルギーを電力に変換すると 51%の場合

 $6.11 \times 10^9 \times \frac{51}{100} = 3.1 \text{ GJ}$

57%の場合

$$6.11 \times 10^9 \times \frac{57}{100} = 3.5 \text{ GJ}$$

最高効率(マイクロ波発振機効率 77 %・発電効率 57 %)での発振の場合、 電力 3.5 GJ - 発振に必要なエネルギー 123 MJ

= 3.377 GJ

最低効率(マイクロ波発振機効率53%・発電効率51%)での発振の場合、

電力 3.5 GJ - 発振に必要なエネルギー 179 MJ

= 2.921 GJ

必要なメタン量および電力変換の計算結果より、0℃以下のメタンハイドレート 1 m³の分解のためにマイクロ波発振機に使用するエネルギーは、メタンハイドレート 1 m³の分解によって得られたメタンから作られるエネルギーと比較して十分小さいこ とが分かった。

よって、0 ℃以下のメタンハイドレート1 m³の場合においてはメタンハイドレート 分解の損益をプラスにすることは可能であると確認できた。

しかし、現実のメタンハイドレートは主に海底領域に存在するため、実際に分解す ることになるメタンハイドレートの温度は0℃以上である。

以下の補表-2に各種マイクロ波発振機の効率および、0℃以上のメタンハイドレート1m³の分解に必要なエネルギー量 399 MJをマイクロ波で与えるために必要なエネ ルギーを示す。

補表-2 各種マイクロ波発信機の効率と

0℃以上のハイドレート分解に必要なエネルギー量

発振出力【kW】	発信効率【%】	出力量【MJ】	MHを壊すまでに 必要な時間【s】	発振に必要な 電力【W】	MHを壊すまでに必要 なエネルギー【MJ】
1.5	62	399	266000	2420	644
5	53	399	79800	9434	753
6	62	399	66500	9677	644
100	77	399	3990	129870	518

表2より、0℃以上のメタンハイドレート1m³の場合、マイクロ波発振機におよそ 518 MJ~753 MJ のエネルギーを与えることで分解できることが分かった。

このエネルギー量は、メタンハイドレート 1 m³ から得られるメタンによる電力 2.921 GJ~ 3.377 GJと比較して十分小さいことが分かった。

1m3のメタンハイドレートの分解に必要な 518 MJ~753 MJ のエネルギーを発電す るために必要なメタンは

最高効率(発電効率 57%・必要なエネルギー 518 MJ)の場合

 $518000 \div \frac{57}{100} = 908772 \text{ kJ}$

 $\frac{908772}{802} = 1133 \text{ mol}$

16 × 1133 = 18128 g

最低効率(発電効率 51%・必要なエネルギー 753 MJ)の場合

$$753000 \div \frac{57}{100} = 1321052 \text{ kJ}$$

 $\frac{1321052}{802} = 1647 \text{ mol}$

 $16 \times 1647 = 26352$ g

となり、必要なメタンは18.1 kg~26.4 kg である。これはメタンハイドレート1 m³か ら取り出せるメタン122kgと比較して十分小さい。

よって、0 ℃ 以上のメタンハイドレート1 m³の場合においてもメタンハイドレート 分解の損益をプラスにすることは可能であると確認できた。

参考文献

- M.A.Janney, H.D.Kimry, M.A.Schmidt, J.O.Kiggans," Grain Growth in Microwave -Annealed Alumina". *American Ceramic Society*. July (1991), pp1675-1681.
- [2] R.Roy, D.Agrawal, J.Cheng, and S.Gedevanishvili, "Unexpected sintering of powdered metals parts in microwaves", *Nature*, 399, 668 (1999).
- [3] K.Ishizaki,K.Nagata and T.Hayashi,"Production of Pig Iron from Magnetite Ore-Coal Composit Pellets by Microwave Heating", *ISUJ Int.*, Vol.45 (2006), pp1403-1409.
- [4] K.Hara,M.Hayashi,M.Sato,K.Nagata."Pig Iron Making by Focused Microwave Beams with 20 kW at 2.45 GHz ",*ISIJ International*, Vol.52 (2012),No.12,pp.2149-2157S.
- [5] D.A.C.Stuerga and P.Gaillard,"Microwave Athermal Effects in Chemistry: A Myth's Autopsy Microwave power Institute", *J.MPEE*, Vol.31, No.2.(1996), pp.113.
- [6] K.Nushiro, S.Kikuchi, T.Yamada," Extraordinary microwave effect on atropo-enantioselective catalytic reduction of biaryl lactones", *chem.Lett.* (2013),42,2.PP.165-167.
- [7] S.Tashima,K.Nushiro, K.Saito, and T.Yamada, Microwave Specific Effect on Catalytic atropo-Enantioselective Ring-Opening Reaction of Biaryl Lactones, *Bull. Chem. Soc. Jpn.* (2016), 89, PP.833-835.
- [8] K.Nushiro, S.Kikuchi, T.Yamada, Microwave effect on catalytic enantioselective Claisen earrangement, *Chem. Commun.* (2013), 49, PP.8371-8373.
- [9] C.O.Kappe, B.Pieber, D.Dallinger," Microwave Effects in Organic Synthesis: Myth or Reality?", *Angew.Chem.Int.Ed.*, (2013), 52, 1088-1094.
- [10] C.O.Kappe," My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren't Microwaves", *Chem.Rec.*(2019),19,15-39.
- [11] 吉川 昇,"材料マイクロ波プロセッシングの基礎",コロナ社,(2014) PP.41.
- [12] I. Prigogine, D.Kondepudi, "Modern Thermodynamics" Chapter 2,3,4,5,9,19, John Wiley & Sons (1998) pp31~149,227~251,427~456.
- [13] A.C. Metaxas, "Industrial MicrowaveHeating", Peter Peregrinus Ltd, London
 U.K.(1983), reprinted with minor corrections (1988), in Chapter 3 Theoretical aspects of volumetric heating, pp 89~97.
- [14] 伊藤 昭彦," グローバルなメタン収支",国立研究開発法人 国立環境研究所, (2017 年度 36 巻 3 号), https://www.nies.go.jp/kanko/news/36/36-3/36-3-04.html.

- [15] Motohiko Tanaka, Motoyasu Sato, and Shin Nakatania," Microwave Heating and Collapse of Methane Hydrate by Molecular Dynamics Simulations", *Chemical Physics* (physics.chem-ph), 6 September 2019, Cite as: arXiv:1909.01024 [physics.chem-ph].
- [16] E.D.Sloan and C.A.Kon,"Clathrate Hydrates of Natural Gases", CRC Press.
- [17] 領域代表者 佐藤元泰,研究計画 A03 班 班長 田中 基彦,"マイクロ波励起・高温非 平衡反応場の科学",文部科学省科学研究費・特定領域研究(平成 18 年度~22 年 度),A03 第5章マイクロ波による物質の加熱機構,PP.65~83.
- [18] H.Tanaka, T.Yagasaki, & M.Matsumoto, "On the phase behaviors of hydrocarbon and noble gas clathrate hydrates: Dissociation pressures, phase diagram, occupancies, and equilibrium with aqueous solution". J. Chem. Phys. 149, 074502 (2018).
- [19] 岡山大学,"ガスハイドレートが安定となる条件が理論的に明らかに", http://www.riis.okayama-u.ac.jp/topics/1096/.
- [20] 酒井 昇,"食品の誘電物性とマイクロ波加熱",「日本食品工学会誌」, Vol. 11, No. 1, pp. 19 30, Mar. (2010).
- [21] 経済産業省 資源エネルギー庁,"エネルギー白書 2021", https://www.enecho.meti.go.jp/about/whitepaper/2021/pdf/,第2部第1章エネルギー動向,2021,12/17.
- [22] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2018
 年度(平成30年度) 2-(1) 発電実績,2021,12/21.
- [23] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2017
 年度(平成29年度) 2-(1) 発電実績,2021,12/21.
- [24] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2016
 年度(平成28年度) 2-(1) 発電実績,2021,12/21.
- [25] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2015 年度(平成27年度) 2-(1)発電実績(総括),2021,12/21.
- [26] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2014
 年度(平成26年度) 2-(1)発電実績(総括),2021,12/21.
- [27] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2013
 年度(平成25年度) 2-(1)発電実績(総括),2021,12/21.

- [28] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2012
 年度(平成24年度) 2-(1)発電実績(総括),2021,12/21.
- [29] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html, 2011
 年度(平成23年度) 2-(1)発電実績(総括),2021,12/21.
- [30] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://warp.da.ndl.go.jp/info:ndljp/pid/11217428/www.enecho.meti.go.jp/statistics/electric _power/ep002/results_archive.html#h22, 2010 年度(平成 22 年度) 2-(1)発電実績(総括),2021,12/21.
- [31] 経済産業省 資源エネルギー庁,"電力調査統計表 過去のデータ", https://warp.da.ndl.go.jp/info:ndljp/pid/11217428/www.enecho.meti.go.jp/statistics/electric _power/ep002/results_archive.html#h22, 2009 年度(平成 21 年度) 2-(1)発電実績(総括),2021,12/21.
- [32] 財務省関税局,"財務省貿易統計 過去の報道発表資料", https://www.customs.go.jp/toukei/shinbun/happyou.htm, 2018年(年分), 2021, 12/21.
- [33] 財務省関税局,"財務省貿易統計 過去の報道発表資料(月分・年分一覧(2000 年~2015 年))", https://www.customs.go.jp/toukei/shinbun/kako/happyou2.htm, 2015 年(年分), 2021,12/21.
- [34] 財務省関税局,"財務省貿易統計 過去の報道発表資料(月分・年分一覧(2000 年~2015 年))", https://www.customs.go.jp/toukei/shinbun/kako/happyou2.htm, 2013 年(年分), 2021,12/21.
- [35] 財務省関税局,"財務省貿易統計 過去の報道発表資料(月分・年分一覧(2000 年~2015 年))", https://www.customs.go.jp/toukei/shinbun/kako/happyou2.htm, 2012 年(年分), 2021,12/21.
- [36] 財務省関税局,"財務省貿易統計 過去の報道発表資料(月分・年分一覧(2000 年~2015 年))", https://www.customs.go.jp/toukei/shinbun/kako/happyou2.htm, 2011 年(年分), 2021,12/21.
- [37] 財務省関税局,"財務省貿易統計 過去の報道発表資料(月分・年分一覧(2000 年~2015 年))", https://www.customs.go.jp/toukei/shinbun/kako/happyou2.htm, 2010 年(年分),2021,12/21.
- [38] 有賀訓, メタンハイドレート, 学研パブリッシング (2011)
- [39] 松本良,他、メタンハイドレート、日経サイエンス (1994)
- [40] 資源エネルギー庁石油・天然課 メタンハイドレート開発コンソーシアム、「ガス メタンハイドレート研究開発 - フェーズ1の取組」2008年9月26日 参考資料 5

- [41] 資源エネルギー庁石油・天然課 メタンハイドレート開発コンソーシアム、「ガス メタンハイドレート研究開発 メタンハイドレートからのガス生産」、
 2008 年 8 月 26 日, http://www.mh21japan.gr.jp/mh/05-2/print/.
- [42] 日本エネルギー学界, 非在来型天然ガスのすべて, 日本工業出版.
- [43] 出口 茂, 向井 貞篤, 小山 岳人," 深海環境における高温・高圧の極限状態--超臨界 水とその不思議--", Bull. Soc. Sea Water Sci., Jpn., 63, 226 - 230 (2009).
- [44] 松本良, 総説 メタンハイドレート, 地学雑誌 Journal of Geography, 118(1) 7-42 (2009) 16,17,31.
- [45] 日本地質学会「海洋底科学の基礎」編集委員会、「海洋底科学の基礎」、共立出版.
- [46] MH21-S 研究開発コンソーシアム,"メタンハイドレートを探す", https://www.mh21japan.gr.jp/search.html, 2021/12/18.
- [47] 伊藤拓馬,皆川秀紀,"東部南海トラフ海域の堆積物に含まれるメタンハイドレートの分解に伴う選択的脱水とその意義",堆積学研究,第72巻,第1号,3-12 (2013).
- [48] 中川聖子, 益田晴恵, 奥平敬元, 千葉仁, "南海トラフ ODP Site808 の火山灰層の自 生粘土鉱物とその酸素同位体比から推定した生成条件", 地球化学, 43 1-13 (2009).
- [49] 中村 和夫," コンピュータ・シミュレーションによるメタンハイドレートの物性値 推算", 地質ニュース 1997 年 2 月号 No.510,PP.32-35.
- [50] Y.P.Handa," Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter",

J. Chem. Thermodynamics, (1986), 18, 915-921.

- [51] リチャード・ローズ,"エネルギー400年史",株式会社草思社,2019年7月25日第1版,PP.34~48,49~96,77~96.
- [52] バーツラフ・シュミル,"エネルギーの人類史 下巻",青土社,2019 年 4 月 10 日,PP.7~24,26~42.
- [53] 下田 淳,"世界文明史",株式会社昭和堂,2017年5月15日,PP.252~266.
- [54] サイモン・フォーティー,"産業革命歴史図鑑",シナノ印刷株式会社,2019年9月27 日第1刷.
- [55] I. Prigogine "The End of Certainty" The freepress, New York, (1997)
- [56] H. Eyring, "The Activated Complex in Chemical Reactions", J. Chem. Phys. 3, 107 (1935), PP.107~115.
- [57] H. Eyring, "The activated Complex and The Absolute Rate of Chemical Reactions", *Chemical Rev. Vol.17,No1*, (1935)p 65~77.
- [58] Hideshi Ooka, Ryuhei Nakamura, "Shift of the Optimum Binding Energy at Higher Rates of Catalysis", *J. Phys. Chem. Lett.* (2019), 10, 6706-6713.

- [59] 内海 秀幸,紀伊國 洋,多田 眞作,"遷移状態理論に基づくセメント系材料の反応速 度に関する研究",土木学会,応用力学論文集(2002 年 8 月) Vol.5,PP.11~18.
- [60] 松本 昭,鳥本 昇,"反応速度および化学平衡に関する実験例",The Chemical Society of Japan, 1970 年 18 巻 3 号 PP. 270-284.
- [61] 竹山 尚賢,中島 紀美枝," 化学反応速度論における定常近似の意味"物性研究 (1971), 16(4), PP. 449-455.
- [62] 石倉 源三郎,"例題演習 マイクロ波回路",東京電機大学出版局,1993 年 4 月 20 日第 1 版 5 刷発行,pp7,43~44.
- [63] K.J. Laidler,"Chemical Kinetics, (third Edition)" Harper Collins Publications, (1987), Chapter 4.
- [64] H.D. Kimrey, M.A. Janney, and P.F. Becher, "Techniques for Ceramic Sintering Using Microwave Energy, "Conference Digest, 12th International Conf. on Infrared and Millimeter Waves, Orlando, FL, December (1987).
- [65] C.Kittel,H.Kroemer,"Thermal Physics", W.H. Freeman & Co.(1980), ISBN-10 0716710889.
- [66] 竹内 和彦,和田 雄二,"マイクロ波化学プロセス技術 II",株式会社シーエムシー出版,2013 年 1 月 7 日第 1 刷.
- [67] 守谷 慎太郎,"マイクロ波加熱の基礎と産業応用",株式会社 R&D 支援センタ ー,2018年11月30日第2刷.
- [68] 財団法人産業創造研究所(c)マイクロ波応用技術研究会,"初歩から学ぶマイクロ波応用技術",株式会社工業調査会,2004 年 6 月 20 日初版 1 刷.

[69] R. Clausius, "Mechanical theory of heat", 1067 London, John van Voost.

- [70] De Donder, Van Rysselberghe Affinity. P. (1936). Menlo Park, CA: *Stanford University Press*.
- [71] 中谷 伸, 佐藤 元泰, 平井 隆司, 永田 和宏," マイクロ波による不可逆的なエネル
- ギーの流れとエントロピー生成", JEMEA Journal Vol.5 (2021.12), pp.53~57.
- [72] 中谷 伸, 佐藤 元泰, 平井 隆司, 永田 和宏,"物質の局所的マイクロ波選択吸収に よる非補償的変換", JEMEA Journal Vol.5 (2021.12), pp.49~52.
- [73] T. Hirai, S. Nakatani, K. Nagata, M. Sato. "Stochastic Thermodynamics under Microwave Irradiation" .13th JEMEA Annual Symposium (2021), on line, Oct 15, 2B04.
- [74] https://www.toyokokagaku.co.jp/product/gas/physical/ch4.html 2021/12/9.
- [75] https://www.vinita.co.jp/institute/microwave/060010.html 2021/12/9.
[76] https://www.enecho.meti.go.jp/committee/council/basic_policy_ subcommittee/018/pdf/018_011.pdf , 2021/12/9.