
情報科学リサーチジャーナル　Vol.19　2012.3 107

ON THE SCALING LAW FOR THE DISCRETE

KINETIC GROWTH PERCOLATION MODEL IN

TWO AND THREE DIMENSIONS

KEIZO YAMAMOTO∗, YUKO YAMADA†and SASUKE MIYAZIMA‡

The critical exponent of the total number of finite clusters α is calculated directly without

using scaling hypothesis both below and above the percolation threshold pc based on a kinetic

growth percolation model in two and three dimensions. Simultaneously, we can calculate

other critical exponents β and γ, and show that the scaling law α + 2β + γ = 2 has been

held in the simulation result above the percolation threshold pc.
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1 INTRODUCTION

The percolation problem is one of the most basic and important models for various phase transition phenomena

in statistical physics. In a number of fields a variety of experimental discussions are reported, but Flory’s

discussion [1] on aggregation in polymer science is the first one directly related to percolation. A mathematical

definition of the percolation problem was given by Broatbent and Hammersley [2] in 1957. The exact values

of threshold concentrations and critical exponents for the percolation problem are found in only several 2-D

lattices [3] from 1965 to 1982. As for the method of the calculation, the series expansion or the Monte Carlo

simulation has mainly been used [4]. The series expansion has been studied by Sykes et al. powerfully and using

these series expansion some of the critical exponents were obtained [5-9]. The Monte Carlo simulation has been

studied by many researchers. Previous works of the critical exponents γ and β were reported by Stool and Domb

[10], Leath and Reich [11], Nakanishi and Stanley [12,13] and Hoshen et al. [14]. The critical exponent α was

reported by Kirkpatrick [15]. Since Kasteleyn and Fortuin [16] provided the analogy between the percolation

problem and other critical phenomena, a number of studies have been made to examine the scaling law in the

percolation problem.

A kinetic growth percolation algorithm was proposed by Leath [17,18] in 1976, and Alexandrowicz [19] in 1980

calculated critical exponents from 2 to 8 dimensions. They showed that the threshold value pc and the critical

exponents were corresponding to usual percolation results [20]. However, all the critical exponents by them

were calculated below the threshold p < pc, because they thought that the function type of the distribution

function also critical exponents α and γ don’t change below and above the threshold. The critical exponent β
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shows the property of the fraction of sites belonging to the infinite cluster. Therefore we have to calculate the

property above the threshold pc < p. It should be decided by using the results above the threshold whether the

scaling law α+ 2β + γ = 2 has been held. However, they concluded that the scaling law was held by using the

value below the threshold. They assumed that the function type of the distribution function obeyed the scaling

hypothesis. It is necessary to calculate the critical exponents independently above the threshold to prove the

scaling law. Above the threshold, however, it is difficult to decide the exponent α because the infinite cluster

appears in the usual percolation method. A lot of previous works described only the exponents β and γ, and the

exponent α is derived from scaling assumption [15]. On the other hand, as the kinetic growth percolation model

(KGM) is able to generate only the finite cluster, we can avoid this difficulty. In the next section the kinetic

growth model (Leath algorithm) will be described and the critical exponents α, β, and γ below and above the

critical point by using KGM in two and three dimensions will be given in Sec.3 and Sec.4, respectively. The

final section will present our conclusions and discussion.

2 KINETIC GROWTH MODEL (LEATH ALGORITHM)

In a site percolation problem, each site has a prescribed probability p (the same for each site) of occupying a

site by the particle, and a probability of 1-p of non-occupying a site by the particle. A bond between the two

nearest neighbor sites is formed when the two nearest neighbor sites are occupied by particles. The connected

sites form a cluster. We obtain the critical probability pc, when the cluster becomes infinitely large. It is known

that the same critical value is obtained by growing up from one site at the origin (KGM [20], Leath algorithm

[18,19]) . KGM (Leath algorithm) is performed on a discrete site percolation as follows:

(1) A particle is placed on the origin.

(2) One site is selected out of the four (or the six in the case of a 3d-simple cubic lattice) nearest neighbor sites

in the case of a 2d-square lattice. The site is occupied or empty, with probability p or 1− p, respectively.

The occupied nearest neighbor sites are linked and construct a cluster.

(3) The above processes are repeated until the cluster grows infinitely or the growth stops.

We repeat above steps (1) to (3) again and again until many sample clusters are obtained. Usually, when the

probability p is greater than the critical probability pc, the infinite cluster is obtained and when the probability

p is less than pc, only the finite size of cluster is obtained. However, in the finite lattice a finite cluster which

spreads from end to end is regarded as an infinite cluster. Also critical exponentsν for the correlation length of

1.3 ( in 2d ) and 0.83 ( in 3d ) are obtained, which are the same as the exponents obtained from the conventional

simulation method [21]. This method of KGM (Leath algorithm) can generate a larger size cluster, which allows

us to simulate a larger size cluster in the same lattice size, because we treat only a single cluster. Therefore

this simulation can be done close to the percolation threshold pc, when we increase p below pc. However, when

we decrease p from a larger probability than pc, many clusters created by this simulation spread over the finite

lattice range. This simulation has not been used above pc.
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3 THE CRITICAL EXPONENTS AND THE PERCOLATION THRESHOLD

IN TWO DIMENSIONS

In the percolation problem, various amounts indicate singularity at the threshold pc. Then, critical exponents

of those quantities are defined by the similarity with the critical phenomena of the phase transitions. Typical

critical exponents α, β, and γ can be calculated from the k-th moment of cluster size by using the cluster size

distribution ns(p) as follows,

Mk =
∑
s

skns(p). (1)

Fig.1 The mean value of percolation fraction P (p, L) is

shown by circles. The solid line is obtained by using the

critical parameter of Table 1.

The mean cluster size corresponds to M2, the

strength of the infinite cluster to M1, and the

total number of finite clusters to M0. From

these moments the critical exponents −γ, β

and 2 − α can be calculated against |p − pc|,
respectively. It is suggested that these criti-

cal exponents depend only on the dimension

of the lattice, but not on the lattice structure

itself. If we assume the scaling assumption of

the distribution function ns(p), the number of

the independent exponents is two. Then, us-

ing the 2d- KGM model, we derive the critical

exponents α, β, and γ independently above

the critical point and examine whether the

scaling law α + 2β +γ = 2 has been held.

Below, we further explain the calculation pro-

cedures for the exponents α, β, and γ.

(i) The critical exponent β:

Fig.2 (a) The percolation fraction log(P (p, L)) is plotted against

log(p−pc). We try to find the best straight line by tuning pc. The

value of pc obtained is 0.5926 and the slope β = 0.139 is obtained.

The probability p of sites belonging

to the infinite cluster shows the critical

behavior near the percolation threshold

pc. It goes to zero by the simple power

law,
P ∼ (p− pc)

β , (2)

and right at the critical point p =

pc we have P = 0. But even be-

low pc we regard a finite cluster as

an infinite one if it touches 2 edges

at the top and the bottom, because of

the finite lattice. Therefore, we esti-

mate a value that is smaller than the
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true pc to be the percolation threshold. We show the mean value of fraction P (p, L) for 10000 sam-

ples against p in Fig.1 together with the curve obtained by using the critical parameters estimated be-

low. The fraction P (p, L) is calculated as a ratio for the cluster to exceed the finite square lattice

(L = 3000). The number of samples is 10000. The fraction P (p, L) becomes non-zero from about

Fig.2 (b) The percolation fraction log(P (p, L)) is plotted against

log(p − pc). When the adjustable value of pc is assumed to be

0.5927, the critical exponent β becomes 0.141.

p = 0.585, though the true percola-

tion threshold pc is about 0.5927. When

p approaches pc, critical phenomena are

shown, but when p closely approaches

the vicinity of pc, the fraction P (p, L) is

slightly over counted and deviates from

Eq. (2) because of some finite size ef-

fects. When p becomes larger than pc,

critical phenomena are not shown. We

show the fraction log(P (p, L)) against

log(p − pc) in Fig.2, where pc is tuned

in order to obtain a straight line. The

critical exponent β is calculated by us-

ing values (gray solid circles in Fig.1

or Fig.2) from p = 0.593 to p=0.615.

When an adjustable value of pc was as-

sumed to be 0.5926, to take into ac-

count some finite size effects [15], the

critical exponent β becomes 0.139 ±
0.001 in Fig.2 (a). When the adjustable value of pc was assumed to be 0.5927, the critical exponent β be-

comes 0.141 ± 0.001 in Fig.2 (b). These parameters allow the good result even in the 3000 × 3000 square

lattice. We believe this is the first time the exponent β has been obtained in KGM.

(ii) The critical exponent α: The total number of finite clusters M0 varies as

M0 ∼ |p− pc|2−α. (3)

By using KGM, the total number of finite clusters is counted as follows. We name clusters containing s sites

s-clusters. We define ns as the number of s-clusters per lattice site. The s-cluster consists of s occupied sites

and t empty sites. If we make N sample clusters by using KGM, s-clusters will be counted at the ratio of nss.

N is determined in the following manner. We sum of each ( s+ t ) sites of the cluster generated one by one. The

simulation is repeated until the total summation of sites satisfies the Eq. (4). (L2 = 3000× 3000 = 9000000).

N∑
t=1

(si + ti) ≈ 9000000 (4)

The frequency distribution f(s) of the s-cluster proportional to nss against size s is obtained. Then we sum

up f(s)/s by over the size s. We obtain the total number of finite clusters M0. This process corresponds to

counting the number of finite clusters in the usual percolation problem.
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Fig.3 The total number of finite clusters M0 is plotted against

p by circles (below pc ) and by squares (above pc ). The solid line

is obtained by using the critical parameters of Table 1.

This total number decreases because

of the appearances of larger clusters

caused by increase of the correla-

tion length, when p approaches be-

low the threshold pc. As the cor-

relation length becomes infinite above

pc, infinites clusters appear. How-

ever, the finite clusters still appear

above pc. We show the total num-

ber of finite clusters M0 against p in

Fig.3 together with the curve obtained

by using the critical parameters esti-

mated as below. The total number

of finite clusters is estimated slightly

larger because only small clusters in

the finite lattice were counted. The

threshold pc is estimated to a slightly

different value from 0.5927 depending on the direction approached from above and from below pc.

Therefore, when p approaches the threshold from below, the threshold pc(L) is estimated a slightly larger than

pc(L = ∞). When p approaches the threshold from above, the threshold pc(L) is estimated slightly smaller

than pc(L = ∞). We show log(M0) against log |pc − p| in Fig.4, where each pc is tuned in order to obtain a

straight line.

Fig.4 (a) The total number of finite clusters log(M0) is plotted

against log(|p − pc|). When the adjustable pc is assumed to be

0.5927, from the slope we have obtained α = −0.66 (below pc )

and α = −0.31 (above pc ).

As shown in Fig.3 and Fig.4, the

power law is valid considerably in the

wide range below the threshold pc.

Therefore, the power law exponent α

does not greatly depend on the thresh-

old (gray solid circles in Fig.4). The

critical exponent α is calculated by us-

ing values from p = 0.450 to p = 0.587

below the threshold pc. When the ad-

justable value of pc was assumed to be

0.5927, the critical exponent α becomes

- 0.66 ± 0.02 below the threshold pc

(gray solid circles in Fig.4 (a)). On the

other hand, the critical exponent α be-

comes - 0.31± 0.03 above the threshold
pc as shown in Fig.4 (a) with gray solid

squares. As our simulation is done in

the range of p near pc from p = 0.597

to p = 0.610, the critical exponent
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α greatly depends on the value of pc.

Fig.4 (b) The total number of finite clusters log(M0) is plotted

against log(|p − pc|). We try to find the best straight line by

tuning pc, below and above pc,, respectively. From the slope we

have obtained α = −0.66 both below and above pc.

When the range of the calculation is

extended, the critical exponent α shows

a tendency to increase. When the ad-

justable value of pc was assumed to be

0.5918, to take into account some finite

size effects, the critical exponent α be-

comes - 0.66 ± 0.02 above the pc in

Fig.4 (b) with gray solid squares and

- 0.66 ± 0.02 below the threshold pc in

Fig.4 (b) with gray solid circles, respec-

tively.

Table 1 The critical exponents are given below and above pc in two dimensions.

pc p < pc pc < p

α
0.5927 -0.66± 0.02 -0.31± 0.03

0.5918 -0.66± 0.02 -0.66± 0.02

0.5927 2.30± 0.01 2.03± 0.02

γ 0.5934 2.38± 0.01

0.5918 2.38± 0.03

β
0.5927 0.141± 0.001

0.5926 0.139± 0.001

(iii) The critical exponent γ:

Fig.5 The mean cluster size S is plotted against p by circles

(below pc ) and by squares (above pc ). The solid line is obtained

by using the critical parameters of Table 1.

When p approaches the threshold pc

the mean cluster size diverges as follows

S ∼ |p− pc|−γ . (5)

The shift of the percolation thresh-

old pc to take into account some fi-

nite size effects is similar to the to-

tal number of finite clusters. We

show the mean cluster size S for

10000 samples against p in Fig.5 to-

gether with the curve obtained by us-

ing the critical parameters estimated

as below. The shape of this curve is like the well known susceptibility χ in magnetization.
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Fig.6 (a) The mean cluster size log(S) is plotted against log(|p − pc|). When the adjustable value of pc is
assumed to be 0.5927, from the slope we have obtained γ = 2.30 (below pc ) and γ = 2.03 (above pc ).

Fig.6 (b) The mean cluster size log(S) is plotted against log(|p−
pc|). We try to find the best straight line by tuning pc, below and
above pc, respectively. From the slope we have obtained γ = 2.38

both below and above pc.

As shown in Fig.6 (a), when pc is

assumed to be 0.5927, exponent γ be-

comes 2.30± 0.01 approaching pc from
p < pc (gray solid circles) and 2.03 ±
0.02 from above (gray solid squares), re-

spectively. As shown in Fig.6 (b), both

exponents γ become 2.38 if we assumed

pc to be 0.5934 when p approaches to

pc from below (gray solid circles) and

to be 0.5918 when p approaches from

above (gray solid squares), respectively

[15]. These critical exponents in two di-

mensions are shown in Table 1.

4 THE CRITICAL EXPONENTS AND THE PERCOLATION THRESHOLD

IN THREE DIMENSIONS

Using the same calculation procedures in the previous section, we obtain the critical exponents α, β, and γ.

(i) The critical exponent β:

The fraction P (p, L) is calculated as a ratio for the cluster to exceed the finite cubic lattice (L=200).

The number of samples is 10000 for each value of p. We show the fraction log(P (p, L)) against

log(p − pc) in Fig.7, where pc is tuned in order to obtain a straight line. The critical exponent β is

calculated by using values (gray solid circles in Fig.7) from p=0.313 to p=0.333. 　　　　　　　　　　
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Fig.7 The percolation fraction log(P (p, L)) is plotted against

log(p−pc). We try to find the best straight line by tuning pc. The

value of pc obtained is 0.3114 and the slope is obtained β = 0.409.

When the adjustable value of pc was

assumed to be 0.3114, to take into ac-

count some finite size effects, the criti-

cal exponent β becomes 0.409 ± 0.004

in Fig.7. When the adjustable value of

pc was assumed to be 0.3116, the criti-

cal exponent β becomes 0.392± 0.004.

Good results were obtained even in the

200 × 200 × 200 cubic lattice.

(ii) The critical exponent α:

The simulation is repeated until the

total summation of sites satisfies the

Eq. (5). (L3 = 200 × 200 × 200 =

8000000).

N∑
t=1

(si + ti) ≈ 8000000 (6)

We show log(M0) against log |pc − p| in Fig.8 , where pc is tuned in order to obtain a straight line, below and
above pc, respectively. When the adjustable value of pc was assumed to be 0.308, to take into account some

finite size effects, the critical exponent α becomes - 0.62 ± 0.04 above the pc in Fig.8 with gray solid squares.

When the adjustable value of pc was assumed to be 0.318, the critical exponent α becomes - 0.63 ± 0.03 below
the threshold pc in Fig.8 with gray solid circles.

Fig.8 The total number of finite clusters log(M0) is plotted

against log(|p − pc|). We try to find the best straight line by

tuning pc, below and above pc, respectively. From the slope we

have obtained α = −0.63 (below pc ) and α = −0.62 (above pc ).

(iii) The critical exponent γ:

The mean cluster size S is calculated

for 10000 samples for each value of p.

We show log(S) against log |p − pc| in
Fig.9, where pc is tuned in order to ob-

tain a straight line, below and above

pc, respectively. When pc is assumed

to be 0.3126, the exponent γ becomes

1.796 ± 0.005 approaching to pc from

p < pc (gray solid circles). When pc is

assumed to be 0.3012, the exponent γ

becomes 1.79± 0.02 approaching to pc

from above (gray solid squares). These

critical exponents in three dimensions

are shown in Table 2.
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Table 2 The critical exponents are given below and above pc in three dimensions.

　 pc p < pc pc < p

α
0.318 -0.63± 0.03

　 0.308 　 -0.62± 0.04

γ
0.3126 1.796± 0.005

　 0.3102 　 1.79± 0.02

β 0.3114 　 0.409± 0.004

Fig.9 The mean cluster size log(S) is plotted against log(|p−pc|).
We try to find the best straight line by tuning pc, below and above

pc, respectively. From the slope we have obtained γ = 1.79 both

below and above pc.

5 CONCLUSION

AND DISCUSSION

In two dimensions as shown in Table

1, critical exponents above the thresh-

old pc are sensitive to the adjustable

value of the threshold pc. When the ad-

justable value of the threshold pc is as-

sumed to be 0.5918, we obtain the same

critical exponent α = −0.66 ± 0.02

below and above pc. This exponent

α = −0.66 ± 0.02 above pc will be a

value that we obtained for the first time

in KGM. For the critical exponent γ, we

obtain the same value 2.38 ± 0.03 be-

low and above pc, when the adjustable value of the threshold pc is assumed to be 0.5918 above pc and 0.5934

below pc. For the critical exponent β, when the adjustable value of the threshold pc is assumed to be 0.5926,

we obtained the value 0.139± 0.001. This exponent is a value obtained for the first time in KGM. For above pc
the scaling law α+ 2β + γ = −0.66 + 2× 0.139 + 2.38 = 1.998 which is almost 2 within the error range. When
the adjustable value of the threshold pc is assumed to be 0.5927(pc(L = ∞)), we obtain α = −0.31 ± 0.03,

γ = 2.03± 0.02 and β = 0.141± 0.001. The scaling law α + 2β + γ becomes 2.002 also. In three dimensions

as shown in Table 2, when the adjustable value of the threshold pc is assumed to be 0.308 above pc and 0.318

below pc, the critical exponent α = −0.62 ± 0.04 above pc and α = −0.63 ± 0.03 below pc, respectively. We

obtain the almost same value for the critical exponent γ both 1.796 ± 0.03 below and 1.79 ± 0.02 above pc,

when the adjustable value of the threshold pc is assumed to be 0.3126 below pc and 0.3102 above pc. For the

critical exponent β, when the adjustable value of the threshold pc is assumed to be 0.3114, we obtained a value

of 0.409 ± 0.004. Above pc the scaling law α + 2β + γ = −0.62 + 2 × 0.409 + 1.79 = 1.988 which is almost 2
within the error range. Therefore, we may conclude that the scaling law is held in two and three dimensions.
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